Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Jianchuan Shu x
- Refine by Access: All Content x
Abstract
Floods and droughts hit southwest China (SWC) frequently, especially over the last decade. In this study, the dominant modes of summer rainfall anomalies over SWC on the interannual time scale and the possible causes are investigated. Interannual variability of the summer rainfall over SWC has two dominant modes. The first mode features rainfall increases over most of SWC except central Sichuan, and the second mode exhibits wet conditions in the north but dry conditions in the south. The suppressed convection over the Philippine Sea affects the first mode by inducing anomalous anticyclones over the western North Pacific and to the south of the Tibetan Plateau, which transport more water vapor to eastern Tibet and eastern SWC and hence favor above-normal rainfall there. The enhanced convection over the western Maritime Continent could generate similar atmospheric circulation anomalies associated with the suppressed convection over the Philippine Sea but with a northward shift, resulting in significant increases in rainfall over northeastern SWC but weak decreases in rainfall over southeastern SWC. As a result, the rainfall anomalies over SWC tend to be different between El Niño–Southern Oscillation decaying and developing phases because their different impacts on the convection over the Philippine Sea and the western Maritime Continent. Meanwhile, the sea surface temperature in the tropical southeastern Indian Ocean also plays an important role in variability of the rainfall over SWC because of its significant impact on the convection over the western Maritime Continent.
Abstract
Floods and droughts hit southwest China (SWC) frequently, especially over the last decade. In this study, the dominant modes of summer rainfall anomalies over SWC on the interannual time scale and the possible causes are investigated. Interannual variability of the summer rainfall over SWC has two dominant modes. The first mode features rainfall increases over most of SWC except central Sichuan, and the second mode exhibits wet conditions in the north but dry conditions in the south. The suppressed convection over the Philippine Sea affects the first mode by inducing anomalous anticyclones over the western North Pacific and to the south of the Tibetan Plateau, which transport more water vapor to eastern Tibet and eastern SWC and hence favor above-normal rainfall there. The enhanced convection over the western Maritime Continent could generate similar atmospheric circulation anomalies associated with the suppressed convection over the Philippine Sea but with a northward shift, resulting in significant increases in rainfall over northeastern SWC but weak decreases in rainfall over southeastern SWC. As a result, the rainfall anomalies over SWC tend to be different between El Niño–Southern Oscillation decaying and developing phases because their different impacts on the convection over the Philippine Sea and the western Maritime Continent. Meanwhile, the sea surface temperature in the tropical southeastern Indian Ocean also plays an important role in variability of the rainfall over SWC because of its significant impact on the convection over the western Maritime Continent.
Abstract
Using satellite observations together with a chemistry–climate model (CCM), the effect of the stratospheric semiannual oscillation (SAO) and quasi-biennial oscillation (QBO) on the equatorial double peak in observed CH4 and NO2 is reexamined. It is concluded that the lower-equatorial Halogen Occultation Experiment (HALOE) CH4 mixing ratio of the April double peak in 1993 and 1995 was associated with the prominent first cycle of the SAO westerlies, which causes local vertical downwelling in the upper equatorial stratosphere. The observational evidences imply that the strong westerlies of the first cycle of the stratospheric SAO in 1993 and 1995 were driven by enhanced lower-stratospheric gravity wave activity in the early parts of those years. The CCM simulations further verify that the gravity wave source strength has a large impact on the development and strength of the SAO westerlies. This result suggests that the equatorial long-lived tracer mixing ratio near the stratopause (which is associated with the strength of the SAO westerlies) was not only modulated by the QBO phase, but was also significantly influenced by interannual variation in the gravity waves. It is also found that the deeper equatorial trough of the double peak is unlikely to be always accompanied by the more prominent Northern Hemispheric lobe, and the Northern Hemispheric lobe of the double peak can be mainly attributed to subtropical upwelling. The altitude of greatest chemical destruction anomalies associated with the SAO and QBO is below the trough of the double peak, implying that the effect of the chemical process on the double peak is insignificant.
Abstract
Using satellite observations together with a chemistry–climate model (CCM), the effect of the stratospheric semiannual oscillation (SAO) and quasi-biennial oscillation (QBO) on the equatorial double peak in observed CH4 and NO2 is reexamined. It is concluded that the lower-equatorial Halogen Occultation Experiment (HALOE) CH4 mixing ratio of the April double peak in 1993 and 1995 was associated with the prominent first cycle of the SAO westerlies, which causes local vertical downwelling in the upper equatorial stratosphere. The observational evidences imply that the strong westerlies of the first cycle of the stratospheric SAO in 1993 and 1995 were driven by enhanced lower-stratospheric gravity wave activity in the early parts of those years. The CCM simulations further verify that the gravity wave source strength has a large impact on the development and strength of the SAO westerlies. This result suggests that the equatorial long-lived tracer mixing ratio near the stratopause (which is associated with the strength of the SAO westerlies) was not only modulated by the QBO phase, but was also significantly influenced by interannual variation in the gravity waves. It is also found that the deeper equatorial trough of the double peak is unlikely to be always accompanied by the more prominent Northern Hemispheric lobe, and the Northern Hemispheric lobe of the double peak can be mainly attributed to subtropical upwelling. The altitude of greatest chemical destruction anomalies associated with the SAO and QBO is below the trough of the double peak, implying that the effect of the chemical process on the double peak is insignificant.
Abstract
The influence of the Arctic Oscillation (AO) on the vertical distribution of stratospheric ozone in the Northern Hemisphere in winter is analyzed using observations and an offline chemical transport model. Positive ozone anomalies are found at low latitudes (0°–30°N) and there are three negative anomaly centers in the northern mid- and high latitudes during positive AO phases. The negative anomalies are located in the Arctic middle stratosphere (~30 hPa; 70°–90°N), Arctic upper troposphere–lower stratosphere (UTLS; 150–300 hPa, 70°–90°N), and midlatitude UTLS (70–300 hPa, 30°–60°N). Further analysis shows that anomalous dynamical transport related to AO variability primarily controls these ozone changes. During positive AO events, positive ozone anomalies between 0° and 30°N at 50–150 hPa are related to the weakened meridional transport of the Brewer–Dobson circulation (BDC) and enhanced eddy transport. The negative ozone anomalies in the Arctic middle stratosphere are also caused by the weakened BDC, while the negative ozone anomalies in the Arctic UTLS are caused by the increased tropopause height, weakened BDC vertical transport, weaker exchange between the midlatitudes and the Arctic, and enhanced ozone depletion via heterogeneous chemistry. The negative ozone anomalies in the midlatitude UTLS are mainly due to enhanced eddy transport from the midlatitudes to the latitudes equatorward of 30°N, while the transport of ozone-poor air from the Arctic to the midlatitudes makes a minor contribution. Interpreting AO-related variability of stratospheric ozone, especially in the UTLS, would be helpful for the prediction of tropospheric ozone variability caused by the AO.
Abstract
The influence of the Arctic Oscillation (AO) on the vertical distribution of stratospheric ozone in the Northern Hemisphere in winter is analyzed using observations and an offline chemical transport model. Positive ozone anomalies are found at low latitudes (0°–30°N) and there are three negative anomaly centers in the northern mid- and high latitudes during positive AO phases. The negative anomalies are located in the Arctic middle stratosphere (~30 hPa; 70°–90°N), Arctic upper troposphere–lower stratosphere (UTLS; 150–300 hPa, 70°–90°N), and midlatitude UTLS (70–300 hPa, 30°–60°N). Further analysis shows that anomalous dynamical transport related to AO variability primarily controls these ozone changes. During positive AO events, positive ozone anomalies between 0° and 30°N at 50–150 hPa are related to the weakened meridional transport of the Brewer–Dobson circulation (BDC) and enhanced eddy transport. The negative ozone anomalies in the Arctic middle stratosphere are also caused by the weakened BDC, while the negative ozone anomalies in the Arctic UTLS are caused by the increased tropopause height, weakened BDC vertical transport, weaker exchange between the midlatitudes and the Arctic, and enhanced ozone depletion via heterogeneous chemistry. The negative ozone anomalies in the midlatitude UTLS are mainly due to enhanced eddy transport from the midlatitudes to the latitudes equatorward of 30°N, while the transport of ozone-poor air from the Arctic to the midlatitudes makes a minor contribution. Interpreting AO-related variability of stratospheric ozone, especially in the UTLS, would be helpful for the prediction of tropospheric ozone variability caused by the AO.