Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jianping Duan x
  • Refine by Access: All Content x
Clear All Modify Search
Jianping Duan, Qi-bin Zhang, and Li-Xin Lv

Abstract

The recent increase in the frequency of winter cold extremes has received particular attention in light of the climate's warming. Knowledge about changes in the frequency of winter cold extremes requires long-term climate data over large spatial scale. In this study, a temperature-sensitive tree-ring network consisting of 31 sampling sites collected from seven provinces in subtropical China was used to investigate the characteristics of cold-season temperature extremes during the past two centuries. The results show that the percentage of trees in a year that experienced an abnormal decrease in radial growth relative to the previous year can serve as an indicator of interannual change in January–March temperature in subtropical China. The frequency of extreme interannual decreases in cold-season temperature has increased since the 1930s. The change in cold-season temperature was significantly correlated with the intensity of the Siberian high, yet the correlation was much weaker in the period preceding the 1930s. The findings provide evidence of a frequency change in the occurrence of interannual cold-season temperature extremes in the past two centuries for subtropical China. Particularly, the pattern in the variation of cold-season temperature suggests a change in climate systems around the 1930s.

Full access
Jianping Li, Richard Swinbank, Ruiqiang Ding, and Wansuo Duan
Full access
Jianping Duan, Lun Li, Zhuguo Ma, Jan Esper, Ulf Büntgen, Elena Xoplaki, Dujuan Zhang, Lily Wang, Hong Yin, and Jürg Luterbacher

Abstract

Large volcanic eruptions may cause abrupt summer cooling over large parts of the globe. However, no comparable imprint has been found on the Tibetan Plateau (TP). Here, we introduce a 400-yr-long temperature-sensitive network of 17 tree-ring maximum latewood density sites from the TP that demonstrates that the effects of tropical eruptions on the TP are generally greater than those of extratropical eruptions. Moreover, we found that large tropical eruptions accompanied by subsequent El Niño events caused less summer cooling than those that occurred without El Niño association. Superposed epoch analysis (SEA) based on 27 events, including 14 tropical eruptions and 13 extratropical eruptions, shows that the summer cooling driven by extratropical eruptions is insignificant on the TP, while significant summer temperature decreases occur subsequent to tropical eruptions. Further analysis of the TP August–September temperature responses reveals a significant postvolcanic cooling only when no El Niño event occurred. However, there is no such cooling for all other situations, that is, tropical eruptions together with a subsequent El Niño event, as well as extratropical eruptions regardless of the occurrence of an El Niño event. The averaged August–September temperature deviation (T dev) following 10 large tropical eruptions without a subsequent El Niño event is up to −0.48° ± 0.19°C (with respect to the preceding 5-yr mean), whereas the temperature deviation following 4 large tropical eruptions with an El Niño association is approximately 0.23° ± 0.16°C. These results indicate a mitigation effect of El Niño events on the TP temperature response to large tropical eruptions. The possible mechanism is that El Niño events can weaken the Indian summer monsoon with a subsequent decrease in rainfall and cooling effect, which may lead to a relatively high temperature on the TP, one of the regions affected by the Indian summer monsoon.

Open access
Jianping Duan, Liang Chen, Lun Li, Peili Wu, Nikolaos Christidis, Zhuguo Ma, Fraser C. Lott, Andrew Ciavarella, and Peter A. Stott
Full access