Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Jianting Zhu x
  • Refine by Access: All Content x
Clear All Modify Search
Binayak P. Mohanty and Jianting Zhu

Abstract

In this study, the authors investigate effective soil hydraulic parameter averaging schemes for steady-state flow in heterogeneous shallow subsurfaces useful to land–atmosphere interaction modeling. “Effective” soil hydraulic parameters of the heterogeneous shallow subsurface are obtained by conceptualizing the soil as an equivalent homogeneous medium. It requires that the effective homogeneous soil discharges the same mean surface moisture flux (evaporation or infiltration) as the heterogeneous media. Using the simple Gardner unsaturated hydraulic conductivity function, the authors derive the effective value for the saturated hydraulic conductivity Ks or the shape factor α under various hydrologic scenarios and input hydraulic parameter statistics. Assuming one-dimensional vertical moisture movement in the shallow unsaturated soils, both scenarios of horizontal (across the surface landscape) and vertical (across the soil profile) heterogeneities are investigated. The effects of hydraulic parameter statistics, surface boundary conditions, domain scales, and fractal dimensions in case of nested soil hydraulic property structure are addressed. Results show that the effective parameters are dictated more by the α heterogeneity for the evaporation scenario and mainly by Ks variability for the infiltration scenario. Also, heterogeneity orientation (horizontal or vertical) of soil hydraulic parameters impacts the effective parameters. In general, an increase in both the fractal dimension and the domain scale enhances the heterogeneous effects of the parameter fields on the effective parameters. The impact of the domain scale on the effective hydraulic parameters is more significant as the fractal dimension increases.

Full access