Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Jie Song x
  • All content x
Clear All Modify Search
Jie Song

Abstract

Utilizing a decomposition of anomalous eddy vorticity forcing (EVF) proposed by Song in 2016 and a modified Geophysical Fluid Dynamics Laboratory (GFDL) dynamical core atmospheric model, this study provides a different understanding of physical mechanisms that are responsible for the formation of the anomalous synoptic EVF (SEVF) associated with Pacific–North American teleconnection pattern (PNA) events. A series of short-term control experiments (CEs) and initial-value modified experiments (IVMEs) is conducted. In each case of CEs, there are no obvious PNA-like circulation anomalies. IVMEs are exactly the same as CEs except that appropriate small perturbations are introduced into the initial-value fields of CEs. The modified initial-value fields led to a gradual development of the PNA-like flow anomalies in IVMEs. Based on these numerical results, deformations of the synoptic eddy due to the emergence of the PNA pattern can be easily acquired by subtracting the synoptic eddy in CEs from the synoptic eddy in IVMEs . The anomalous SEVF associated with the PNA events in the model can be decomposed into ensembles of two linear and interaction terms (EVF1 and EVF2) and a nonlinear self-interaction term (EVF3). It is demonstrated that the physical essence of the anomalous SEVF associated with the PNA events is a competition result between EVF1 plus EVF2 and EVF3. Results also indicate that the different signs of SEVF associated with the positive and negative PNA events are not necessarily related to the different tilts of the synoptic eddy.

Open access
Jie Song

Abstract

This study investigates the North Atlantic Oscillation (NAO) events with relatively long and short lifetimes based on an 8000-day perpetual-boreal-winter [December–February (DJF)] run result of the idealized Geophysical Fluid Dynamics Laboratory (GFDL) dynamical core atmospheric model. We identify the so-called long- and short-lived positive and negative NAO events from the 8000-day model output. The composite 300-hPa geopotential height anomalies show that the spatial patterns of the composite long-lived NAO events closely resemble the Northern Hemisphere annular mode (NAM) because the NAO dipole is accompanied with a statistically significant North Pacific meridional dipole (NPMD) at similar latitudes as that of the NAO dipole. The composite short-lived NAO events exhibit the locally confined canonical NAO. Twelve sets of modified initial-value experiments indicate that an absence (a presence) of the NPMD-type perturbations at the early stage of the long (short)-lived NAO events will decrease (increase) their intensities and naturally shorten (lengthen) their lifetimes. Thus, the preceding NPMD is an early factor that is conducive to the emergence of the long-lived NAO events in the model. We argue that through directly modulating the synoptic eddy forcing over the North Atlantic region, the preceding NPMD can gradually arouse the NAO-like circulation anomalies on the following days. That is the reason why the preceding NPMD can modulate the intensities and lifetimes of the NAO events.

Open access
Jie Song

Abstract

This study proposes an anomalous eddy vorticity forcing (EVF) decomposing procedure to investigate physical mechanisms responsible for the formation of the anomalous EVF associated with North Atlantic Oscillation (NAO) events. Utilizing the Geophysical Fluid Dynamics Laboratory (GFDL) dynamical core atmospheric model, a series of NAO initial-value short-term experiments are conducted. Applying the EVF decomposing procedure to the results of these experiments, the anomalous nonlinear EVF associated with the NAO events in the model can be decomposed into several fundamental linear eddy–eddy interaction terms and an unimportant nonlinear eddy–eddy interaction term. Compared with the NAO-free situation, synoptic-scale eddies have faster (slower) eastward phase speeds during the positive (negative) NAO events. Through a synoptic-scale eddy–eddy interaction mechanism, the behaviors of anomalous EVF components in the positive (negative) NAO events are well explained by synoptic-scale eddies with faster (slower) eastward phase speeds. Therefore, synoptic-scale eddies with faster (slower) eastward phase speeds are responsible for the development of the anomalous EVF associated with positive (negative) NAO events. Note that at the initial stage of the NAO initial-value experiments, the faster (slower) phase speeds of the synoptic-scale eddies are specified by modifying the initial-value fields and then are amplified/maintained by the strengthening (weakening) zonal wind in the middle and high latitudes associated with the approaching positive (negative)-phase NAO. Therefore, this study indicates that the properties of the synoptic-scale eddies at the initial stage determine the upcoming NAO anomalies.

Full access
Jie Song and Chongyin Li

Abstract

Using daily data, this study compares the subseasonal seesaw relationship between anomalous tropical western North Pacific (WNP) convection and anomalous rainfall over subtropical East Asia during boreal summers (June–August) in which the Indian Ocean (IO) sea surface temperature is either warmer or colder than normal. It is found that the precipitation anomalies over central-eastern China (25°–35°N, 110°–120°E) associated with the anomalous tropical WNP convection activities during the IO cold summers are weaker and less evident compared to that in the IO warm summers, indicating the seesaw relationship in the IO cold summers becomes obscure. This contrasting seesaw relationship between the IO warm and cold summers is attributed to different patterns of anomalous moisture transportation and vertical motion over central-eastern China. The anomalous circulations associated with the anomalous tropical WNP convection [the Pacific–Japan (PJ) pattern] during the IO warm and cold summers show that, relative to the IO warm summers, the Japan action center of the PJ pattern has an evident northwestward displacement in the IO cold summers. It is argued that this northwestward displacement of the Japan action center plays a key role in the formation of the distinct seesaw relationship through modifying the anomalous moisture transportation and vertical motion.

Full access
Jie Song, Wen Zhou, Xin Wang, and Chongyin Li

Abstract

This study investigates linkages between the zonal asymmetry of the annular mode (AM) zonal pattern and the subtropical jet (STJ) over its downstream regions of the storm track by using an idealized model. Observational analyses show that the AM zonal patterns are more zonally asymmetric during days when the STJ downstream of the storm track is unusually strong, and vice versa. In the idealized model, the STJ downstream of the storm track is varied by introducing an additional zonally localized tropical heating. The model’s AM variability exhibits a nearly zonally uniform structure when there is no or only weak tropical heating. However, the signatures of the AM are locally strengthened in the heating sector; thus, the AM zonal pattern is zonally asymmetric when the tropical heating is large enough to create a strong STJ. The model results also show that the percentage of the variance explained by the AM, the persistence of the AM index, and the intensity of eddy feedback are also increased when the tropical heating becomes stronger. It is argued herein that the zonal asymmetry of the AM pattern is caused by the zonal asymmetry of the anomalous synoptic eddy forcing projecting on the AM, which is primarily due to the zonal asymmetry of the variations of the storm track between the nonheating and heating sectors.

Full access
Jie Song, Ke Liao, Richard L. Coulter, and Barry M. Lesht

Abstract

A unique dataset obtained with combinations of minisodars and 915-MHz wind profilers at the Atmospheric Boundary Layer Experiments (ABLE) facility in Kansas was used to examine the detailed characteristics of the nocturnal low-level jet (LLJ). In contrast to instruments used in earlier studies, the ABLE instruments provide hourly, high-resolution vertical profiles of wind velocity from just above the surface to approximately 2 km above ground level (AGL). Furthermore, the 6-yr span of the dataset allowed the examination of interannual variability in jet properties with improved statistical reliability. It was found that LLJs occurred during 63% of the nighttime periods sampled. Although most of the observed jets were southerly, a substantial fraction (28%) was northerly. Wind maxima occurred most frequently at 200–400 m AGL, though some jets were found as low as 50 m, and the strongest jets tended to occur above 300 m. Comparison of LLJ heights at three locations within the ABLE domain and at one location outside the domain suggests that the jet is equipotential rather than terrain following. The occurrence of southerly LLJ varied annually in a way that suggests a connection between the tendency for jet formation and the large-scale circulation patterns associated with El Niño and La Niña, as well as with the Pacific decadal oscillation. Frequent and strong southerly jets that transport moisture downstream do not necessarily lead to more precipitation locally, however.

Full access
Jie Song, Chongyin Li, Jing Pan, and Wen Zhou

Abstract

The characteristics of the climatological distribution of the anticyclonic (LC1) and cyclonic (LC2) Rossby wave breaking (RWB) in the Southern Hemisphere (SH) are investigated by calculating the occurrence frequency of the LC1- and LC2-like stratospheric potential vorticity (PV) streamers in the SH during the austral summer [December–February (DJF)] and wintertime [June–August (JJA)] on several isentropic surfaces by using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) daily dataset. The results show that 1) on the equatorward flank of the climatological midlatitude jet (MLJ), the LC1-like PV streamers are frequently found over the central oceanic regions, whereas the LC2-like PV streamers are almost absent. On the poleward flank of the climatological MLJ, both types of PV streamers are frequently observed and the LC2-like PV streamers predominate; 2) the regions where the occurrences of the PV streamers are frequent overlap the weak zonal wind regions; and 3) in austral winter, a “double-jet” setting is evident in two regions of the SH [the double-jet upstream (DU) and the spilt jet region]. In the double-jet setting regions, the LC1-like PV streamers are frequently found both in the DU and the split-jet regions, while the occurrence of the LC2-like PV streamers is frequent in the split-jet region but is rather infrequent in the DU region.

Full access
Zhihong Jiang, Fei Huo, Hongyun Ma, Jie Song, and Aiguo Dai

Abstract

Impacts of urbanization and anthropogenic aerosols in China on the East Asian summer monsoon (EASM) are investigated using version 5.1 of the Community Atmosphere Model (CAM5.1) by comparing simulations with and without incorporating urban land cover and/or anthropogenic aerosol emissions. Results show that the increase of urban land cover causes large surface warming and an urban frictional drag, both leading to a northeasterly wind anomaly in the lower troposphere over eastern China (EC). This weakens the southerly winds associated with the EASM and causes a convergence anomaly in southern China (SC) with increased ascent, latent heating, and cloudiness. The enhanced latent heating reinforces surface convergence and upper-level divergence over SC, leading to more northward advection in the upper level into northern China (NC) and descending between 30° and 50°N over East Asia. Cloudiness reduction, adiabatic heating, and warm advection over NC all enhance the urban heating there, together causing anomalous tropospheric warming at those latitudes over East Asia. Anthropogenic aerosols cause widespread cooling at the surface and in the troposphere over EC, which decreases the summer land–ocean thermal contrast, leading to a weakened EASM circulation with reduced moisture transport to NC. This results in wetter and drier conditions over SC and NC, respectively. When both the urbanization and anthropogenic aerosols are included in the model, aerosols’ cooling is partially offset by the urban heating, and their joint effect on the circulation is dominated by the aerosols’ effect with a reduced magnitude. In the combined experiment, surface and tropospheric temperatures are also altered by the decrease (increase) in cloudiness over NC (SC) with most of the cooling confined to SC, which further weakens the EASM circulation.

Full access
Xiuzhen Li, Wen Zhou, Deliang Chen, Chongyin Li, and Jie Song

Abstract

The water vapor transport and moisture budget over eastern China remotely forced by the cold-tongue (CT) and warm-pool (WP) El Niño show striking differences throughout their lifetime. The water vapor transport response is weak in the developing summer but strong in the remaining phases of CT El Niño, whereas the opposite occurs during WP El Niño. WP El Niño causes a moisture deficit over the Yangtze River valley (YZ) in the developing summer and over southeastern China (SE) in the developing fall, whereas CT El Niño induces a moisture surplus first over SE during the developing fall with the influential area expanding in the decaying spring and shifting northward in the decaying summer. It is the divergence of meridional water vapor transport that dominates the total water vapor divergence anomaly, with the divergence of zonal transport showing an opposite pattern with smaller magnitude.

Investigation of the vertical profile of moisture budget shows a great baroclinicity, with the strongest abnormal moisture budget occurring in different levels. The moisture transport via the southern boundary plays a crucial role in the regional moisture budget anomalies and is located near the surface over SE, in the lower troposphere over the YZ, and at the lower-middle troposphere over the eastern part of northern China. The enhanced moisture surplus near the surface forced by WP El Niño over SE in the mature winter and decaying spring is offset by a moisture deficit within the lower-middle troposphere due to a diverse response circulation at different vertical levels.

Full access
Xiuzhen Li, Wen Zhou, Chongyin Li, and Jie Song

Abstract

The variation in regional precipitation over southeast and southwest China depends strongly on externally imported moisture rather than local evaporation. Associated with the different climate over the two regions, great discrepancies appear in the annual cycles of the moisture supply. Stationary moisture transport dominates externally imported moisture to a large extent, with transient transport being much weaker. The stationary moisture sink over southeast China is strong during spring and summer due to strong moisture input via the southern boundary and weak during fall and winter due to the offset between the output via the southern boundary and the net zonal boundary atmospheric flux. Zonal stationary moisture transport dominates the variation in moisture supply over southwest China. Negative net zonal boundary atmospheric flux countervails (collaborates) with positive meridional transport during the dry (wet) season.

Stationary moisture circulations dominate regional atmospheric moisture convergence anomalies over both southeast and southwest China. Weak cold air activity is favorable for a strong moisture sink over southeast China, while the reverse appears over southwest China in spring. The east-to-west location of the abnormal anticyclone determines whether strong moisture converges over southeast China or southwest China in fall. The anticyclonic circulation anomaly over the Philippine Sea, remotely forced by El Niño, is crucial to the strong moisture sink over southeast China from winter to spring, while it does not play a role in the abnormal moisture sink over southwest China.

Full access