Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jinquan Chen x
  • Refine by Access: All Content x
Clear All Modify Search


Accurate storm surge forecasts provided rapidly could support timely decision-making with consideration of tropical cyclone (TC) forecasting error. This study developed a fast storm surge ensemble prediction method based on TC track probability forecasting and searching optimization of a numerical scenario database (SONSD). In a case study of the Fujian Province coast (China), a storm surge scenario database was established using numerical simulations generated by 93,150 hypothetical TCs. In a GIS-based visualization system, a single surge forecast representing 2562 distinct typhoon tracks and the occurrence probability of overflow of seawalls along the coast could be achieved in 1–2 min. Application to the cases of Typhoon Soudelor (2015) and Typhoon Maria (2018) demonstrated that the proposed method is feasible and effective. Storm surge calculated by SONSD had excellent agreement with numerical model results (i.e., mean MAE/RMSE: 7.1/10.7 cm, correlation coefficient: >0.9). Tide prediction also performed well with MAE/RMSE of 9.7/11.6 cm versus the harmonic tide, and MAE/RMSE of phase prediction for all high waters of 0.25/0.31 h versus observations. The predicted high-water level was satisfactory (MAE of 10.8 cm versus observations) when the forecasted and actual positions of the typhoon were close. When the forecasted typhoon position error was large, the ensemble surge prediction effectively reduced prediction error (i.e., the negative bias of −58.5 cm reduced to −5.2 cm versus observations), which helped avoid missed alert warnings. The proposed method could be applied in other regions to provide rapid and accurate decision-making support for government departments.

Restricted access
Linghui Cai, Shaoping Shang, Guomei Wei, Zhigang He, Yanshuang Xie, Ke Liu, Tao Zhou, Jinquan Chen, Feng Zhang, and Yan Li


Dual high-frequency (HF) radar systems are often used to provide measurements of waves, winds, and currents. In this study, the accuracy of wave measurements using a single HF radar system (OS081H-A) was explored using datasets obtained during 5–27 January 2014 in the southwestern Taiwan Strait. We selected the study region as an area with >90% coverage (i.e., the range was <100 km). Qualitative and quantitative intercomparison of wave measurements (by the radar and five buoys) and wave model products [from the Simulating Wave Nearshore (SWAN) model] were conducted. Intercomparison of the modeled and in situ significant wave height Hs showed that the model-predicted Hs could be considered to be acceptable for use as “sea truth” to evaluate the radar-derived Hs, with mean bias from −0.45 to −0.16 m, mean absolute error (MAE) of 0.24–0.45 m, and root-mean-square error of 0.31–0.54 m. It was found that the MAE of radar-derived Hs was ≤ 1 m for 86% of the sector (except at the edge of sector) when the model-predicted Hs was ≥ 1.5 m. In particular, the MAE was less than 0.6 m for 63% of the sector, which was mainly distributed in the area with a bearing from −50° to +70° and a range of 20–70 km. The results are promising, but more work is needed. We employed a spatial distribution function for the MAE of the radar-derived Hs over the sample duration based on range, bearing, and mean radar-derived Hs.

Full access