Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jisong Sun x
  • All content x
Clear All Modify Search
Gaili Wang, Da-Lin Zhang, and Jisong Sun


A multiscale observational analysis of a nocturnal extreme rainfall event that occurred at Changtu in Northeast China on 14 July 2017 is performed using global analysis, automated surface observations, Doppler radar, rawinsonde, and disdrometer data. Results show that the large-scale environment was characterized by high convective available potential energy and precipitable water, moderate convective inhibition, and a southwesterly low-level jet (LLJ) capped by an inversion layer. The first and subsequent convective cells developed along a quasi-stationary surface convergence zone in a convection-void region of a previously dissipated meso-α-scale convective line. Continuous convective initiation through backbuilding at the western end and the subsequent merging of eastward-moving convective cells led to the formation of a near-zonally oriented meso-β-scale rainband, with reflectivity exceeding 45 dBZ (i.e., convective core intensity). This quasi-stationary rainband was maintained along the convergence zone by the LLJ of warm moist air, aided by local topographical lifting and convectively generated outflows. A maximum hourly rainfall amount of 96 mm occurred during 0200–0300 Beijing standard time as individual convective cores with a melting layer of >55 dBZ reflectivity moved across Changtu with little intermittency. The extreme-rain-producing stage was characterized with near-saturated vertical columns, and rapid number concentration increases of all raindrop sizes. It is concluded that the formation of the meso-β-scale rainband with continuous convective backbuilding, and the subsequent echo-training of convective cores with growing intensity and width as well as significant fallouts of frozen particles accounted for the generation of this extreme rainfall event. This extreme event was enhanced by local topography and the formation of a mesovortex of 20–30 km in diameter.

Restricted access
Mingxin Li, Da-Lin Zhang, Jisong Sun, and Qinghong Zhang


An 8-yr (i.e., 2008–15) climatology of the spatiotemporal characteristics of hail events in China and their associated environmental conditions are examined using hail observations, L-band rawinsondes, and global reanalysis data. A total of 1003 hail events with maximum hail diameter (MHD) of greater than 5 mm are selected and then sorted into three hail-size bins. Hail events with the largest MHD bin correspond to the median vertical wind shear in the lowest 6-km layer (SHR6) of 21.6 m s−1, precipitable water (PW) of 34.8 mm, and convective available potential energy (CAPE) of 2192 J kg−1. Hail with different MHD bins share similar freezing-level heights (FLHs) of about 4000 m. The thickness of the hail growth zone is thinner for hail events with the largest MHD bin. Hail events with different MHD bins display seasonal variations associated with the summer monsoon; that is, the hail season starts in South China in spring and then shifts to North China in summer. Larger hail is mainly observed during the spring in South China before monsoon onset in the presence of an upper-level jet and a low-level southwesterly flow accounting for large SHR6 and PW. In contrast, smaller-MHD hailstorms occur mainly during the summer in North China when surface heating is high and the low-level southerly flow shifts northward with pronounced baroclinicity providing large CAPE and PW, moderate SHR6, and low FLH. Environmental CAPE and SHR6 for large hailstones in China are comparable in magnitude to those in the United States but larger than those in some European countries.

Full access