Search Results

You are looking at 1 - 10 of 45 items for

  • Author or Editor: João Teixeira x
  • Refine by Access: All Content x
Clear All Modify Search
João Teixeira

Abstract

The relationship between relative humidity and low cloud cover produced by a prognostic cloud fraction formulation is compared with observations. From a steady-state version of the prognostic cloud fraction equation, a diagnostic relation for cloud fraction can be derived for subtropical boundary layer clouds. The results are quite realistic when compared with observations illustrating the relevance of the coupling with parameterized convection.

Full access
Hideaki Kawai
and
João Teixeira

Abstract

Mathematical forms of probability density functions (PDFs) of liquid water path (LWP) and total water content for marine boundary layer clouds are investigated using the homogeneity, skewness, and kurtosis of PDFs of LWP obtained from observations described in a companion paper. First, observed LWP PDF data are divided into four categories depending on the stability between 775 and 1000 hPa in order to investigate the characteristics of the PDFs of LWP depending on stability of the atmospheric boundary layer (ABL). The relationships between cloud amount and higher moments of LWP PDFs for different ABLs show different features. When the stability becomes larger, the LWP PDFs have larger homogeneity, smaller skewness, and smaller kurtosis for similar cloud amounts.

To extract useful information about the PDFs of total water content for strongly and moderately stable ABLs, the relationship between LWP PDFs and PDFs of total water content is determined by introducing a set of simple assumptions for the vertical structure of total water content in well-mixed boundary layers. By comparing the observed relationships between cloud amount and higher moments of LWP PDFs, with similar relationships deduced theoretically from various forms of PDFs of total water content, it is found that, in general, the triangular and Gaussian PDFs are a realistic approximation for PDFs of total water content in marine boundary layer clouds for strongly and moderately stable ABLs. Results concerning the correction ratio for the autoconversion rate of cloud water content to precipitation and the reduction factor for shortwave reflectance, as functions of cloud amount, are also discussed.

Full access
Johannes Karlsson
and
João Teixeira

Abstract

Air advected equatorward by the trade winds off the coast of California is associated with decreasing cloud cover and is subjected to increasingly warmer sea surface temperatures. These gradients imply large gradients in the surface energy fluxes. Based on the surface energy balance and on the assumption of a small net surface energy flux, which is supported by reanalysis data, a cloud cover model of the climatological stratocumulus to cumulus transition in the northeastern subtropical Pacific Ocean is developed. Using climatological meteorological surface variables, the model, despite its simplicity, is able to describe the transition from stratocumulus to cumulus reasonably well in terms of cloud cover.

Full access
Hideaki Kawai
and
João Teixeira

Abstract

The subgrid-scale variability of the liquid water path (LWP) of marine boundary layer clouds in areas that correspond to the typical grid size of large-scale (global climate and weather prediction) atmospheric models (200 km × 200 km) is investigated using geostationary satellite visible data. Geographical and seasonal variations of homogeneity, skewness, and kurtosis of probability density functions (PDFs) of LWP are discussed, in addition to cloud amount. It is clear that not only cloud amount but also these subgrid-scale statistics have well-defined geographical patterns and seasonal variations.

Furthermore, the meteorological factors that control subgrid-scale statistics of LWP that are related to boundary layer clouds are investigated using reanalysis data and PDFs of LWP data from satellites. Meteorological factors related to stability between 850 and 1000 hPa show high correlations with cloud amount and with the homogeneity, skewness, and kurtosis of PDFs of LWP of marine boundary layer clouds. The corrected gap of low-level moist static energy (CGLMSE) index, which is related to cloud-top entrainment instability, shows the highest correlation with the shape of LWP PDFs.

Full access
Sun Wong
and
João Teixeira

Abstract

Changes in tropical convective events provide a test bed for understanding changes of extreme convection in a warming climate. Because convective cloud top in deep convection is associated with cold brightness temperatures (BTs) in infrared window channels, variability in global convective events can be studied by spaceborne measurements of BTs. The sensitivity of BTs, directly measured by an Atmospheric Infrared Sounder (AIRS) window channel, to natural changes (the seasonal cycle and El Niño–Southern Oscillation) in tropical sea surface temperature (SST) is examined. It is found that tropical average BTs (over the ocean) at the low percentiles of their probability distributions scale with tropical average SSTs (higher SST leading to colder BTs), with the lower percentiles being significantly more sensitive to changes in SST. The sensitivity is reduced for high percentiles of BT and is insignificant for the median BT, and has similar magnitudes for the two natural changes used in the study. The regions where the lower-percentile BTs are most sensitive to SST are near the edges of the convection active areas (intertropical convergence zone and South Pacific convergence zone), including areas with active tropical cyclone activity. Since cold BTs of lower percentiles represent stronger convective events, this study provides, for the first time, global observational evidence of higher sensitivity of changes in stronger convective activity to a changing SST. This result has important potential implications in answering the key climate question of how severe tropical convection will change in a warming world.

Full access
Michael MacDonald
and
João Teixeira

Abstract

We present a turbulent kinetic energy (TKE) closure scheme for the stably stratified atmosphere in which the mixing lengths for momentum and heat are not parameterized in the same manner. The key difference is that, while the mixing length for heat tends toward the stability independent mixing length for momentum in neutrally stratified conditions, it tends toward one based on the Brunt–Väisälä time scale and square root of the TKE in the limit of large stability. This enables a unique steady-state solution for TKE to be obtained, which we demonstrate would otherwise be impossible if the mixing lengths were the same. Despite the model’s relative simplicity, it is shown to perform reasonably well with observational data from the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99) using commonly employed model constants. Analyzing the scaling behavior of the nondimensional velocity and potential temperature gradients, or of the stability (correction) functions, reveals that for large stability the present model scales in the same manner as the first-order operational scheme of Viterbo et al. Alternatively, it appears as a blend of two cases of the TKE closure scheme of Baas et al. Critically, because a unique steady-state TKE can be obtained, the present model avoids the nonphysical behavior identified in one of the cases of Baas et al.

Free access
Georgios Matheou
and
João Teixeira

Abstract

A series of numerical experiments where both physical and numerical model parameters are varied with respect to a reference setup is used to investigate the physics of a stratocumulus cloud and the performance of a large-eddy simulation (LES) model. The simulations show a delicate balance of physical processes with some sensitivities amplified by numerical model features. A strong feedback between cloud liquid, cloud-top radiative cooling, and turbulence leads to slow grid convergence of the turbulent fluxes. For a methodology that diagnoses cloud liquid from conserved variables, small errors in the total water amount result in large liquid water errors, which are amplified by the cloud-top radiative cooling leading to large variations of buoyancy forcing. In contrast, when the liquid–radiation–buoyancy feedback is not present in simulations without radiation, the turbulence structure of the boundary layer remains essentially identical for grid resolutions between 20 and 1.25 m. The present runs suggest that the buoyancy reversal instability significantly enhances the entrainment rate. Even though cloud-top radiative cooling is regarded as a key attribute of stratocumulus, the present simulations suggest that surface fluxes and surface shear significantly contribute to the total turbulent kinetic energy. Turbulence spectra exhibit inertial range scaling away from the confinement effects of the surface and inversion. Fine grid resolution LESs agree with observations, especially with respect to cloud liquid and vertical velocity variance, and exhibit grid convergence without any model tuning or ad hoc model choices.

Full access
João Teixeira
and
Carolyn A. Reynolds

Abstract

In this paper it is argued that ensemble prediction systems can be devised in such a way that physical parameterizations of subgrid-scale motions are utilized in a stochastic manner, rather than in a deterministic way as is typically done. This can be achieved within the context of current physical parameterization schemes in weather and climate prediction models. Parameterizations are typically used to predict the evolution of grid-mean quantities because of unresolved subgrid-scale processes. However, parameterizations can also provide estimates of higher moments that could be used to constrain the random determination of the future state of a certain variable. The general equations used to estimate the variance of a generic variable are briefly discussed, and a simplified algorithm for a stochastic moist convection parameterization is proposed as a preliminary attempt. Results from the implementation of this stochastic convection scheme in the Navy Operational Global Atmospheric Prediction System (NOGAPS) ensemble are presented. It is shown that this method is able to generate substantial tropical perturbations that grow and “migrate” to the midlatitudes as forecast time progresses while moving from the small scales where the perturbations are forced to the larger synoptic scales. This stochastic convection method is able to produce substantial ensemble spread in the Tropics when compared with results from ensembles created from initial-condition perturbations. Although smaller, there is still a sizeable impact of the stochastic convection method in terms of ensemble spread in the extratropics. Preliminary simulations with initial-condition and stochastic convection perturbations together in the same ensemble system show a promising increase in ensemble spread and a decrease in the number of outliers in the Tropics.

Full access
Kay Sušelj
,
João Teixeira
, and
Georgios Matheou

Abstract

In this study, the eddy diffusivity/mass flux (EDMF) approach is used to combine parameterizations of nonprecipitating moist convection and boundary layer turbulence. The novel aspect of this EDMF version is the use of a probability density function (PDF) to describe the moist updraft characteristics. A single bulk dry updraft is initialized at the surface and integrated vertically. At each model level, the possibility of condensation within the updraft is considered based on the PDF of updraft moist conserved variables. If the updraft partially condenses, it is split into moist and dry updrafts, which are henceforth integrated separately. The procedure is repeated at each of the model levels above. The single bulk updraft ends up branching into numerous moist and dry updrafts. With this new approach, the need to define a cloud-base closure is circumvented. This new version of EDMF is implemented in a single-column model (SCM) and evaluated using large-eddy simulation (LES) results for the Barbados Oceanographic and Meteorological Experiment (BOMEX) representing steady-state convection over ocean and the Atmospheric Radiation Measurement (ARM) case representing time-varying convection over land. The new EDMF scheme is able to represent the properties of shallow cumulus and turbulent fluxes in cumulus-topped boundary layers realistically. The parameterized updraft properties partly account for the behavior of the tail of the PDF of moist conserved variables. It is shown that the scheme is not particularly sensitive to the vertical resolution of the SCM or the main model parameters.

Full access
Kay Sušelj
,
João Teixeira
, and
Daniel Chung

Abstract

A single-column model (SCM) is developed for representing moist convective boundary layers. The key component of the SCM is the parameterization of subgrid-scale vertical mixing, which is based on a stochastic eddy-diffusivity/mass-flux (EDMF) approach. In the EDMF framework, turbulent fluxes are calculated as a sum of the turbulent kinetic energy–based eddy-diffusivity component and a mass-flux component. The mass flux is modeled as a fixed number of steady-state plumes. The main challenge of the mass-flux model is to properly represent cumulus clouds, which are modeled as moist plumes. The solutions have to account for a realistic representation of condensation within the plumes and of lateral entrainment into the plumes. At the level of mean condensation within the updraft, the joint pdf of moist conserved variables and vertical velocity is used to estimate the proportion of dry and moist plumes and is sampled in a Monte Carlo way creating a predefined number of plumes. The lateral entrainment rate is modeled as a stochastic process resulting in a realistic decrease of the convective cloudiness with height above cloud base. In addition to the EDMF scheme, the following processes are included in the SCM: a pdf-based parameterization of subgrid-scale condensation, a simple longwave radiation, and one-dimensional dynamics. Note that in this approach there are two distinct pdfs, one representing the variability of updraft properties and the other one the variability of thermodynamic properties of the surrounding environment. The authors show that the model is able to capture the essential features of moist boundary layers, ranging from stratocumulus to shallow-cumulus regimes. Detailed comparisons, which include pdfs, profiles, and integrated budgets with the Barbados Oceanographic and Meteorological Experiment (BOMEX), Dynamics and Chemistry of Marine Stratocumulus (DYCOMS), and steady-state large-eddy simulation (LES) cases, are discussed to confirm the quality of the present approach.

Full access