Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Joanne Kunkel x
  • Refine by Access: All Content x
Clear All Modify Search
Joanne Kunkel
,
John Hanesiak
, and
David Sills

Abstract

Historical tornado events from 1982 to 2020 were documented within Canada’s forested regions using high-resolution satellite imagery. Tornado forest disturbances were identified using a three-step process: 1) detecting, 2) assessing, and 3) dating each event. A grid of 120 km × 120 km boxes was created covering Canada (excluding the extreme north). Of the 484 boxes, 367 were manually searched. Once a long, narrow region of tree damage was detected, it was first cross-referenced with known tornado databases to ensure it was a unique event. Once events were classified as either tornadic or downburst, the coordinates of the start, worst damage, and end locations were documented, as well as the direction of motion, damage indicators, degree of damage, estimated maximum wind speed, and F/EF-scale rating. In total, 231 previously unknown tornadoes were identified. In Ontario, 103 events were discovered, followed by 98 in Quebec, 9 in Manitoba, 6 in Saskatchewan, 9 in Alberta, 5 in British Columbia, and 1 in New Brunswick. The largest number of discovered tornadoes occurred in 2015, and the largest number of strong F2 tornadoes occurred in 2005. Most of the discovered tornadoes occurred in July for both F/EF1 and F/EF2 ratings. Most tornado tracks had widths between 200 and 400 m, and more than 50% of the tornadoes had a pathlength of less than 10 km. Of all the events that were discovered, 125 events could be fully dated, 19 were dated only by month, 41 were dated only by year, and 46 remained undated.

Open access
David M. L. Sills
,
Gregory A. Kopp
,
Lesley Elliott
,
Aaron Jaffe
,
Elizabeth Sutherland
,
Connell Miller
,
Joanne Kunkel
,
Emilio Hong
,
Sarah Stevenson
, and
William Wang
Full access
David M. L. Sills
,
Gregory A. Kopp
,
Lesley Elliott
,
Aaron L. Jaffe
,
Liz Sutherland
,
Connell S. Miller
,
Joanne M. Kunkel
,
Emilio Hong
,
Sarah A. Stevenson
, and
William Wang

Abstract

Canada is a vast country with most of its population located along its southern border. Large areas are sparsely populated and/or heavily forested, and severe weather reports are rare when thunderstorms occur there. Thus, it has been difficult to accurately assess the true tornado climatology and risk. It is also important to establish a reliable baseline for tornado-related climate change studies. The Northern Tornadoes Project (NTP), led by Western University, is an ambitious multidisciplinary initiative aimed at detecting and documenting every tornado that occurs across Canada. A team of meteorologists and wind engineers collects research-quality data during each damage investigation via thorough ground surveys and high-resolution satellite, aircraft, and drone imaging. Crowdsourcing through social media is also key to tracking down events. In addition, NTP conducts research to improve our ability to detect and accurately assess tornadoes that affect forests, cropland, and grassland. An open data website allows sharing of resulting datasets and analyses. Pilot investigations were carried out during the warm seasons of 2017 and 2018, with the scope expanding from the detection of any tornadoes in heavily forested regions of central Canada in 2017 to the detection of all EF1+ tornadoes in Ontario plus all significant events outside of Ontario in 2018. The 2019 season was the first full campaign, systematically collecting research-quality tornado data across the entire country. To date, the project has found 89 tornadoes that otherwise would not have been identified, and increased the national tornado count in 2019 by 78%.

Full access