Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Joel B. Cohen x
  • Refine by Access: All Content x
Clear All Modify Search
Ariel E. Cohen, Joel B. Cohen, Richard L. Thompson, and Bryan T. Smith


This study presents the development and testing of two statistical models that simulate tornado potential and wind speed. This study reports on the first-ever development of two multiple regression–based models to assist warning forecasters in statistically simulating tornado probability and tornado wind speed in a diagnostic manner based on radar-observed tornado signature attributes and one environmental parameter. Based on a robust database, the radar-based storm-scale circulation attributes (strength, height above ground, clarity) combine with the effective-layer significant tornado parameter to establish a tornado probability. The second model adds the categorical presence (absence) of a tornadic debris signature to derive the tornado wind speed. While the fits of these models are considered somewhat modest, their regression coefficients generally offer physical consistency, based on findings from previous research. Furthermore, simulating these models on an independent dataset and other past cases featured in previous research reveals encouraging signals for accurately identifying higher potential for tornadoes. This statistical application using large-sample-size datasets can serve as a first step to streamlining the process of reproducibly quantifying tornado threats by service-providing organizations in a diagnostic manner, encouraging consistency in messaging scientifically sound information for the protection of life and property.

Full access
Ariel E. Cohen, Richard L. Thompson, Steven M. Cavallo, Roger Edwards, Steven J. Weiss, John A. Hart, Israel L. Jirak, William F. Bunting, Jaret W. Rogers, Steven F. Piltz, Alan E. Gerard, Andrew D. Moore, Daniel J. Cornish, Alexander C. Boothe, and Joel B. Cohen


During the 2014–15 academic year, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service Storm Prediction Center (SPC) and the University of Oklahoma (OU) School of Meteorology jointly created the first SPC-led course at OU focused on connecting traditional theory taught in the academic curriculum with operational meteorology. This class, “Applications of Meteorological Theory to Severe-Thunderstorm Forecasting,” began in 2015. From 2015 through 2017, this spring–semester course has engaged 56 students in theoretical skills and related hands-on weather analysis and forecasting applications, taught by over a dozen meteorologists from the SPC, the NOAA National Severe Storms Laboratory, and the NOAA National Weather Service Forecast Offices. Following introductory material, which addresses many theoretical principles relevant to operational meteorology, numerous presentations and hands-on activities focused on instructors’ areas of expertise are provided to students. Topics include the following: storm-induced perturbation pressure gradients and their enhancement to supercells, tornadogenesis, tropical cyclone tornadoes, severe wind forecasting, surface and upper-air analyses and their interpretation, and forecast decision-making. This collaborative approach has strengthened bonds between meteorologists in operations, research, and academia, while introducing OU meteorology students to the vast array of severe thunderstorm forecast challenges, state-of-the-art operational and research tools, communication of high-impact weather information, and teamwork skills. The methods of collaborative instruction and experiential education have been found to strengthen both operational–academic relationships and students’ appreciation of the intricacies of severe thunderstorm forecasting, as detailed in this article.

Open access