Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Johannes M. L. Dahl x
  • All content x
Clear All Modify Search
Johannes M. L. Dahl

Abstract

The question of how rotation arises in sheared updrafts is analyzed using the shear and curvature vorticity framework. Local rotation exists where the shear and curvature vorticity have a similar magnitude and the same sign, such that parcels are in near-solid-body rotation. It is shown that the tilting terms of the vertical vorticity equation cannot explain the development of local rotation in the canonical cases where the horizontal vorticity is either purely streamwise or purely crosswise. Rather, vertical shear vorticity develops if crosswise vorticity is tilted, and vertical curvature vorticity develops if streamwise vorticity is tilted. To analyze how local rotation develops, two simulations of updrafts in an environment with crosswise and mostly streamwise vorticity, respectively, are discussed. A trajectory analysis is performed and shear and curvature vorticity budgets are analyzed. It is found that much of the horizontal vorticity near the updraft becomes streamwise, which results from pressure gradient accelerations in the vicinity of the updraft. Consequently, in the analyzed scenarios, the tilting mechanism results primarily in vertical curvature vorticity. Local rotation is achieved via an interchange process that facilitates a partial conversion of vertical curvature vorticity to vertical shear vorticity. Updraft rotation in supercells thus does not result from tilting of horizontal vorticity alone, but partial conversion of curvature to shear vorticity is also required.

Full access
Johannes M. L. Dahl

Abstract

In many supercell simulations, near-ground vortex formation results from the collapse of an elongated region of enhanced vertical vorticity. In this study, this “roll-up” mechanism is analyzed by investigating the behavior of several 2D elliptic vortex patches. The problem is treated as a nonlinear initial value problem, which is better suited to describe the roll-up mechanism than the more commonly employed normal-mode analysis. Using the Bryan Cloud Model 1, it is demonstrated that the condition for vortex formation is an initial finite-amplitude nonuniformity within the vortex patch. Vortex formation results from differential self-advection due to the flow induced by the patch itself. Background straining motion may either aid or suppress vortex-patch axisymmetrization depending on the initial orientation of the patch relative to the deformation axis. It is also found that in some cases numerical dispersion may lead to nonuniformities that serve as seed for axisymmetrization, thus resulting in unphysical vortex development.

Restricted access
Johannes M. L. Dahl

Abstract

This study addresses the robustness of the baroclinic mechanism that facilitates the onset of surface rotation in supercells by using two idealized simulations with different microphysics parameterizations and by considering previous results. In particular, the importance of ambient crosswise vorticity relative to baroclinically generated vorticity in the development of near-ground cyclonic vorticity is analyzed. The storms were simulated using the CM1 model in a kinematic base state characterized by a straight-line hodograph. A trajectory analysis spanning about 30 min was performed for a large number of parcels that contribute to near-surface vertical-vorticity maxima. The vorticity along these trajectories was decomposed into barotropic and nonbarotropic parts, where the barotropic vorticity represents the effects of the preexisting, substantially crosswise horizontal storm-relative vorticity. The nonbarotropic part represents the vorticity produced baroclinically within the storm. It was found that the imported barotropic vorticity attains a downward component near the surface, while the baroclinic vorticity points upward and dominates. This dominance of the baroclinic vorticity is independent of whether a single-moment or double-moment microphysics parameterization is used. A scaling argument is offered as explanation, predicting that the baroclinic vertical vorticity becomes increasingly dominant as downdraft strength increases.

Full access
Jannick Fischer and Johannes M. L. Dahl

Abstract

In the recent literature, the conception has emerged that supercell tornado potential may mostly depend on the strength of the low-level updraft, with more than sufficient subtornadic vertical vorticity being assumed to be present in the outflow. In this study, we use highly idealized simulations with heat sinks and sources to conduct controlled experiments, changing the cold pool or low-level updraft character independently. Multiple, time-dependent heat sinks are employed to produce a realistic near-ground cold pool structure. It is shown that both the cold pool and updraft strength actively contribute to the tornado potential. Furthermore, there is a sharp transition between tornadic and nontornadic cases, indicating a bifurcation between these two regimes triggered by small changes in the heat source or sink magnitude. Moreover, larger updraft strength, updraft width, and cold pool deficit do not necessarily result in a stronger maximum near-ground vertical vorticity. However, a stronger updraft or cold pool can both drastically reduce the time it takes for the first vortex to form.

Restricted access
Johannes M. L. Dahl and Jannick Fischer

Abstract

The authors investigate the origin of prefrontal, warm-season convergence lines over western Europe using the Weather Research and Forecasting Model. These lines form east of the cold front in the warm sector of an extratropical cyclone, and they are frequently the focus for convective development. It is shown that these lines are related to a low-level thermal ridge that accompanies the base of an elevated mixed layer (EML) plume generated over the Iberian Peninsula and northern Africa. Using Q-vector diagnostics, including the components that describe scalar and rotational quasigeostrophic frontogenesis, it is shown that the convergence line is associated with the rearrangement of the isentropes especially at the western periphery of the EML plume. The ascending branch of the resulting ageostrophic circulation coincides with the surface velocity convergence. The modeling results are supported by a 3-yr composite analysis of cold fronts with and without preceding convergence lines using NCEP–NCAR Reanalysis-1 data.

Full access
Christian H. Boyer and Johannes M. L. Dahl

Abstract

Despite their structural differences, supercells and quasi-linear convective systems (QLCS) are both capable of producing severe weather, including tornadoes. Previous research has highlighted multiple potential mechanisms by which horizontal vorticity may be reoriented into the vertical at low levels, but it is not clear in which situation what mechanism dominates. In this study, we use the CM1 model to simulate three different storm modes, each of which developed relatively large near-surface vertical vorticity. Using forward-integrated parcel trajectories, we analyze vorticity budgets and demonstrate that there seems to be a common mechanism for maintaining the near-surface vortices across storm structures. The parcels do not acquire vertical vorticity until they reach the base of the vortices. The vertical vorticity results from vigorous upward tilting of horizontal vorticity and simultaneous vertical stretching. While the parcels analyzed in our simulations do have a history of descent, they do not acquire appreciable vertical vorticity during their descent. Rather, during the analysis period relatively large horizontal vorticity develops as a result of horizontal stretching, and therefore this vorticity can be effectively tilted into the vertical.

Restricted access
Matthew D. Parker and Johannes M. L. Dahl

Abstract

This study uses an idealized heat sink to examine the possible roles of the wind profile in modulating the production of surface vertical vorticity by a downdraft. The basic vorticity evolution in these idealized simulations is consistent with previous work: the process is primarily baroclinic and produces near-ground vertical vorticity within the outflow. Sensitivity experiments affirm that the only fundamental requirement for downdrafts to produce surface vertical vorticity is the existence of ambient downdraft-relative flow. Vertical vorticity production increases monotonically as the low-level downdraft-relative flow increases from zero up through intermediate values (in these experiments, 10–15 m s−1), followed by a monotonic decrease for greater values. This sensitivity has to do with the degree of cooling acquired by parcels as they pass through the idealized heat sink as well as the degree to which horizontal vorticity vectors subsequently attain an orientation that is normal to isosurfaces of vertical velocity. Although the addition of vertical wind shear is not directly helpful to surface vertical vorticity production in these simulations, increased realism of outflow structure is attained in hodographs with ambient streamwise vorticity. Furthermore, the necessary condition of flow through a region of downdraft forcing would in nature probably require the existence of ambient vertical shear. Therefore, shear in the lower troposphere has a possibly important indirect role in modulating the initial production of near-ground rotation.

Full access
Johannes M. L. Dahl, Matthew D. Parker, and Louis J. Wicker

Abstract

The authors use a high-resolution supercell simulation to investigate the source of near-ground vertical vorticity by decomposing the vorticity vector into barotropic and nonbarotropic parts. This way, the roles of ambient and storm-generated vorticity can be isolated. A new Lagrangian technique is employed in which material fluid volume elements are tracked to analyze the rearrangement of ambient vortex-line segments. This contribution is interpreted as barotropic vorticity. The storm-generated vorticity is treated as the residual between the known total vorticity and the barotropic vorticity.

In the simulation the development of near-ground vertical vorticity is an outflow phenomenon. There are distinct “rivers” of cyclonic shear vorticity originating from the base of downdrafts that feed into the developing near-ground vortex. The origin of these rivers of vertical vorticity is primarily horizontal baroclinic production, which is maximized in the lowest few hundred meters AGL. Subsequently, this horizontal vorticity is tilted upward while the parcels are still descending. The barotropic vorticity remains mostly streamwise along the analyzed trajectories and does not acquire a large vertical component as the parcels reach the ground. Thus, the ambient vorticity that is imported into the storm contributes only a small fraction of the total near-ground vertical vorticity.

Full access
Johannes M. L. Dahl, Hartmut Höller, and Ulrich Schumann

Abstract

In Part I of this two-part paper a new method of predicting the total lightning flash rate in thunderstorms was introduced. In this paper, the implementation of this method into the convection-permitting Consortium for Small Scale Modeling (COSMO) model is presented.

The new approach is based on a simple theoretical model that consists of a dipole charge structure, which is maintained by a generator current and discharged by lightning and, to a small extent, by a leakage current. This approach yields a set of four predictor variables, which are not amenable to direct observations and consequently need to be parameterized (Part I).

Using an algorithm that identifies thunderstorm cells and their properties, this approach is applied to determine the flash frequency of every thunderstorm cell in the model domain. With this information, the number of flashes that are accumulated by each cell and during the interval between the activation of the lightning scheme can be calculated.

These flashes are then randomly distributed in time and beneath each cell. The output contains the longitude, the latitude, and the time of occurrence of each simulated discharge.

Simulations of real-world scenarios are presented, which are compared to measurements with the lightning detection network, LINET. These comparisons are done on the cloud scale as well as in a mesoscale region composing southern Germany (two cases each). The flash rates of individual cumulonimbus clouds at the extreme ends of the intensity spectrum are realistically simulated. The simulated overall lightning activity over southern Germany is dominated by spatiotemporal displacements of the modeled convective clouds, although the scheme generally reproduces realistic patterns such as coherent lightning swaths.

Full access
Andrew Vande Guchte and Johannes M. L. Dahl

Abstract

Parcel trajectory analysis has become commonplace in the study of simulated severe convection, particularly that which deals with the development and maintenance of near-ground vertical vorticity. However, there are a number of unsolved problems with analyzing simulated trajectories that exist near the ground. One of these unsolved problems is how to deal with parcels that pass beneath the lowest scalar model level. Using the CM1 model, which uses a Lorenz grid, the sensitivity of parcel characteristics such as location or potential temperature to the choice of common extrapolation methods is documented. Using potential temperature as an example, it is explained why unphysical tendencies of scalar variables along trajectories may arise once parcels descend beneath the lowest scalar model level. Given the poorly constrained flow (and scalar) fields beneath the lowest scalar model level, errors such as those documented here appear unavoidable when using free-slip boundary conditions.

Full access