Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Johannes S. Wagner x
- Refine by Access: All Content x
Abstract
The role of horizontal model grid resolution on the development of the daytime boundary layer over mountainous terrain is studied. A simple idealized valley topography with a cross-valley width of 20 km, a valley depth of 1.5 km, and a constant surface heat flux forcing is used to generate upslope flows in a warming valley boundary layer. The goal of this study is to investigate differences in the boundary layer structure of the valley when its topography is either fully resolved, smoothed, or not resolved by the numerical model. This is done by performing both large-eddy (LES) and kilometer-scale simulations with horizontal mesh sizes of 50, 1000, 2000, 4000, 5000, and 10 000 m. In LES mode a valley inversion layer develops, which separates two vertically stacked circulation cells in an upper and lower boundary layer. These structures weaken with decreasing horizontal model grid resolution and change to a convective boundary layer over an elevated plain when the valley is no longer resolved. Mean profiles of the LES run, which are obtained by horizontal averaging over the valley show a three-layer thermal structure and a secondary heat flux maximum at ridge height. Strong smoothing of the valley topography prevents the development of a valley inversion layer with stacked circulation cells and leads to higher valley temperatures due to smaller valley volumes. Additional LES and “1 km” runs over corresponding smoothed valleys reveal that differences occur mainly because of unresolved topography and not because of unresolved turbulence processes. Furthermore, the deactivation of horizontal diffusion improved simulations with 1- and 2-km horizontal resolution.
Abstract
The role of horizontal model grid resolution on the development of the daytime boundary layer over mountainous terrain is studied. A simple idealized valley topography with a cross-valley width of 20 km, a valley depth of 1.5 km, and a constant surface heat flux forcing is used to generate upslope flows in a warming valley boundary layer. The goal of this study is to investigate differences in the boundary layer structure of the valley when its topography is either fully resolved, smoothed, or not resolved by the numerical model. This is done by performing both large-eddy (LES) and kilometer-scale simulations with horizontal mesh sizes of 50, 1000, 2000, 4000, 5000, and 10 000 m. In LES mode a valley inversion layer develops, which separates two vertically stacked circulation cells in an upper and lower boundary layer. These structures weaken with decreasing horizontal model grid resolution and change to a convective boundary layer over an elevated plain when the valley is no longer resolved. Mean profiles of the LES run, which are obtained by horizontal averaging over the valley show a three-layer thermal structure and a secondary heat flux maximum at ridge height. Strong smoothing of the valley topography prevents the development of a valley inversion layer with stacked circulation cells and leads to higher valley temperatures due to smaller valley volumes. Additional LES and “1 km” runs over corresponding smoothed valleys reveal that differences occur mainly because of unresolved topography and not because of unresolved turbulence processes. Furthermore, the deactivation of horizontal diffusion improved simulations with 1- and 2-km horizontal resolution.
Abstract
The breakup of a nocturnal temperature inversion during daytime is studied in an idealized valley by means of high-resolution numerical simulations. Vertical fluxes of heat and mass are strongly reduced as long as an inversion is present; hence it is important to understand the mechanisms leading to its removal. In this study breakup times are determined as a function of the radiative forcing. Further, the effect of the nocturnal inversion on the vertical exchange of heat and mass is quantified. The Weather Research and Forecasting Model is applied to an idealized quasi-two-dimensional valley. The net shortwave radiation is specified by a sine function with amplitudes between 150 and 850 W m−2 during daytime and at zero during the night. The valley inversion is eroded within 5 h for the strongest forcing. A minimal amplitude of 450 W m−2 is required to reach the breakup, in which case the inversion is removed after 11 h. Depending on the forcing amplitude, between 10% and 57% of the energy provided by the surface sensible heat flux is exported out of the valley during the whole day. The ratio of exported energy to provided energy is approximately 1.6 times as large after the inversion is removed as before. More than 5 times the valley air mass is turned over in 12 h for the strongest forcing, whereas the mass is turned over only 1.3 times for 400 W m−2.
Abstract
The breakup of a nocturnal temperature inversion during daytime is studied in an idealized valley by means of high-resolution numerical simulations. Vertical fluxes of heat and mass are strongly reduced as long as an inversion is present; hence it is important to understand the mechanisms leading to its removal. In this study breakup times are determined as a function of the radiative forcing. Further, the effect of the nocturnal inversion on the vertical exchange of heat and mass is quantified. The Weather Research and Forecasting Model is applied to an idealized quasi-two-dimensional valley. The net shortwave radiation is specified by a sine function with amplitudes between 150 and 850 W m−2 during daytime and at zero during the night. The valley inversion is eroded within 5 h for the strongest forcing. A minimal amplitude of 450 W m−2 is required to reach the breakup, in which case the inversion is removed after 11 h. Depending on the forcing amplitude, between 10% and 57% of the energy provided by the surface sensible heat flux is exported out of the valley during the whole day. The ratio of exported energy to provided energy is approximately 1.6 times as large after the inversion is removed as before. More than 5 times the valley air mass is turned over in 12 h for the strongest forcing, whereas the mass is turned over only 1.3 times for 400 W m−2.
Abstract
The impact of transient tropospheric forcing on the deep vertical mountain-wave propagation is investigated by a unique combination of in situ and remote sensing observations and numerical modeling. The temporal evolution of the upstream low-level wind follows approximately a
Abstract
The impact of transient tropospheric forcing on the deep vertical mountain-wave propagation is investigated by a unique combination of in situ and remote sensing observations and numerical modeling. The temporal evolution of the upstream low-level wind follows approximately a