Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: John J. Marra x
  • All content x
Clear All Modify Search
Michael C. Kruk, Kyle Hilburn, and John J. Marra

Abstract

This study analyzes 25 years of Special Sensor Microwave Imager (SSM/I) retrievals of rain rate and wind speed to assess changes in storminess over the open water of the Pacific Ocean. Changes in storminess are characterized by combining trends in both the statistically derived 95th percentile exceedance frequencies of rain rate and wind speed (i.e., extremes). Storminess is computed annually and seasonally, with further partitioning done by phase of the El Niño–Southern Oscillation (ENSO) index and the Pacific decadal oscillation (PDO) index. Overall, rain-rate exceedance frequencies of 6–8 mm h−1 cover most of the western and central tropical Pacific, with higher values present around the Philippines, Japan, Mexico, and the northwest coast of Australia. Wind speed exceedance frequencies are a strong function of latitude, with values less (greater) than 12 m s−1 equatorward (poleward) of 30°N/S. Statistically significant increasing trends in rain rate were found in the western tropical Pacific near the Caroline Islands and the Solomon Islands, and in the extratropics from the Aleutian Islands down the coast along British Columbia and Washington State. Statistically significant increasing trends in wind speed are present in the equatorial central Pacific near Kiribati and the Republic of the Marshall Islands (RMI), and in the extratropics along the west coast of the United States and Canada. Thus, while extreme rain and winds are both increasing across large areas of the Pacific, these areas are modulated according to the phase of ENSO and the PDO, and their intersection takes aim at specific locations.

Full access
William V. Sweet, Melisa Menendez, Ayesha Genz, Jayantha Obeysekera, Joseph Park, and John J. Marra
Full access
Nicholas T. Luchetti, Jessica R. P. Sutton, Ethan E. Wright, Michael C. Kruk, and John J. Marra

Abstract

There are more than 2,000 islands across Hawaii and the U.S.-Affiliated Pacific Islands (USAPI), where freshwater resources are heavily dependent upon rainfall. Many of the islands experience dramatic variations in precipitation during the different phases of the El Niño–Southern Oscillation (ENSO). Traditionally, forecasters in the region relied on ENSO climatologies based on spatially limited in situ data to inform their seasonal precipitation outlooks. To address this gap, a unique NOAA/NASA collaborative project updated the ENSO-based rainfall climatology for the Exclusive Economic Zones (EEZs) encompassing Hawaii and the USAPI using NOAA’s PERSIANN Climate Data Record (CDR). The PERSIANN-CDR provides a 30-yr record of global daily precipitation at 0.25° resolution (∼750 km2 near the equator). This project took place over a 10- week NASA DEVELOP National Program term and resulted in a 478-page climatic reference atlas. This atlas is based on a 30-yr period from 1 January 1985 through 31 December 2014 and complements station data by offering an enhanced spatial representation of rainfall averages.

Regional and EEZ-specific maps throughout the atlas illustrate the percent departure from average for each season based on the Oceanic Niño Index (ONI) for different ENSO phases. To facilitate intercomparisons across locations, this percentage-based climatology was provided to regional climatologists, forecasters, and outreach experts within the region. Anomalous wet and dry maps for each ENSO phase are used by the regional constituents to better understand precipitation patterns across their regions and to produce more accurate forecasts to inform adaptation, conservation, and mitigation options for drought and f looding events.

Full access
Michael C. Kruk, Britt Parker, John J. Marra, Kevin Werner, Richard Heim, Russell Vose, and Philip Malsale

Abstract

Within the realm of climate and environmental sciences, stakeholder engagement has traditionally been given a relative low priority in favor of generating tools, products, and services following the longstanding practice of pushing out information in the hopes users will pull it into their decision toolkits. However, the landscape is gradually shifting away from that paradigm and toward one in which the stakeholder community is more directly involved in the production of products and services with the scientific organization. This mutual learning arrangement, referred to as the coproduction of knowledge, has been applied to two user engagement activities within the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) and the NOAA Office of Coastal Management (OCM) Coral Reef Conservation Program (CRCP). The iterative nature of such dialogues helped scientists within NCEI and OCM to better understand user requirements and as a result generate climate information that was locally relevant and regionally applicable. The recent engagement activities exemplified the benefits of a robust and sustained relationship between climate scientists and the user community. They demonstrate that the interactions between the two led to the empowerment of the local community to shape and mold climate information products as well as further enhancing user buy in of these products and services with which local agriculture and food security, disaster risk reduction, energy, health, and water decisions are being made. This coproduction of knowledge model for user engagement activities also serves to build trust between the scientific and user communities.

Full access
Michael C. Kruk, John J. Marra, Peter Ruggiero, David Atkinson, Mark Merrifield, David Levinson, and Mark Lander
Full access
Matthew J. Widlansky, John J. Marra, Md. Rashed Chowdhury, Scott A. Stephens, Elaine R. Miles, Nicolas Fauchereau, Claire M. Spillman, Grant Smith, Grant Beard, and Judith Wells

Abstract

Sea level anomaly extremes impact tropical Pacific Ocean islands, often with too little warning to mitigate risks. With El Niño, such as the strong 2015/16 event, comes weaker trade winds and mean sea level drops exceeding 30 cm in the western Pacific that expose shallow-water ecosystems at low tides. Nearly opposite climate conditions accompany La Niña events, which cause sea level high stands (10–20 cm) and result in more frequent tide- and storm-related inundations that threaten coastlines. In the past, these effects have been exacerbated by decadal sea level variability, as well as continuing global sea level rise. Climate models, which are increasingly better able to simulate past and future evolutions of phenomena responsible for these extremes (i.e., El Niño–Southern Oscillation, Pacific decadal oscillation, and greenhouse warming), are also able to describe, or even directly simulate, associated sea level fluctuations. By compiling monthly sea level anomaly predictions from multiple statistical and dynamical (coupled ocean–atmosphere) models, which are typically skillful out to at least six months in the tropical Pacific, improved future outlooks are achieved. From this multimodel ensemble comes forecasts that are less prone to individual model errors and also uncertainty measurements achieved by comparing retrospective forecasts with the observed sea level. This framework delivers online a new real-time forecasting product of monthly mean sea level anomalies and will provide to the Pacific island community information that can be used to reduce impacts associated with sea level extremes.

Full access
Matthew J. Widlansky, H. Annamalai, Stephen B. Gingerich, Curt D. Storlazzi, John J. Marra, Kevin I. Hodges, Barry Choy, and Akio Kitoh

Abstract

Potential changing climate threats in the tropical and subtropical North Pacific Ocean were assessed, using coupled ocean–atmosphere and atmosphere-only general circulation models, to explore their response to projected increasing greenhouse gas emissions. Tropical cyclone occurrence, described by frequency and intensity, near islands housing major U.S. defense installations was the primary focus. Four island regions—Guam and Kwajalein Atoll in the tropical northwestern Pacific, Okinawa in the subtropical northwestern Pacific, and Oahu in the tropical north-central Pacific—were considered, as they provide unique climate and geographical characteristics that either enhance or reduce the tropical cyclone risk. Guam experiences the most frequent and severe tropical cyclones, which often originate as weak systems close to the equator near Kwajalein and sometimes track far enough north to affect Okinawa, whereas intense storms are the least frequent around Oahu. From assessments of models that simulate well the tropical Pacific climate, it was determined that, with a projected warming climate, the number of tropical cyclones is likely to decrease for Guam and Kwajalein but remain about the same near Okinawa and Oahu; however, the maximum intensity of the strongest storms may increase in most regions. The likelihood of fewer but stronger storms will necessitate new localized assessments of the risk and vulnerabilities to tropical cyclones in the North Pacific.

Full access
Molly Baringer, Mariana B. Bif, Tim Boyer, Seth M. Bushinsky, Brendan R. Carter, Ivona Cetinić, Don P. Chambers, Lijing Cheng, Sanai Chiba, Minhan Dai, Catia M. Domingues, Shenfu Dong, Andrea J. Fassbender, Richard A. Feely, Eleanor Frajka-Williams, Bryan A. Franz, John Gilson, Gustavo Goni, Benjamin D. Hamlington, Zeng-Zhen Hu, Boyin Huang, Masayoshi Ishii, Svetlana Jevrejeva, William E. Johns, Gregory C. Johnson, Kenneth S. Johnson, John Kennedy, Marion Kersalé, Rachel E. Killick, Peter Landschützer, Matthias Lankhorst, Tong Lee, Eric Leuliette, Feili Li, Eric Lindstrom, Ricardo Locarnini, Susan Lozier, John M. Lyman, John J. Marra, Christopher S. Meinen, Mark A. Merrifield, Gary T. Mitchum, Ben Moat, Didier Monselesan, R. Steven Nerem, Renellys C. Perez, Sarah G. Purkey, Darren Rayner, James Reagan, Nicholas Rome, Alejandra Sanchez-Franks, Claudia Schmid, Joel P. Scott, Uwe Send, David A. Siegel, David A. Smeed, Sabrina Speich, Paul W. Stackhouse Jr., William Sweet, Yuichiro Takeshita, Philip R. Thompson, Joaquin A. Triñanes, Martin Visbeck, Denis L. Volkov, Rik Wanninkhof, Robert A. Weller, Toby K. Westberry, Matthew J. Widlansky, Susan E. Wijffels, Anne C. Wilber, Lisan Yu, Weidong Yu, and Huai-Min Zhang
Full access