Search Results
You are looking at 1 - 10 of 33 items for
- Author or Editor: John Kaplan x
- Refine by Access: All Content x
Abstract
An empirical model for predicting the maximum wind of landfalling tropical cyclones is developed. The model is based upon the observation that the wind speed decay rate after landfall is proportional to the wind speed. Observations also indicate that the wind speed decays to a small, but nonzero, background wind speed. With these assumptions, the wind speed is determined from a simple two-parameter exponential decay model, which is a function of the wind speed at landfall and the time since landfall. A correction can also be added that accounts for differences between storms that move inland slowly and storms that move inland rapidly. The model parameters are determined from the National Hurricane Center best track intensities of all U.S. landfalling tropical cyclones south of 37°N for the period 196793. Three storms that made landfall in Florida prior to 1967 were also included in the sample. Results show that the two-parameter model explains 91% of the variance of the best track intensity changes. When the correction that accounts for variations in the distance inland is added, the model explains 93% of the variance.
This modal can be used for operational forecasting of the maximum winds of landfalling tropical cyclones. It can also be used to estimate the maximum inland penetration of hurricane force winds (or any wind speed threshold) for a given initial storm intensity. The maximum winds at an inland point will occur for a storm that moves inland perpendicular to the coastline. Under this assumption, the maximum wind at a fixed point becomes a function of the wind speed at landfall and the translational speed of motion. For planning purposes, maps of the maximum inland wind speed can be prepared for various initial storm intensities and speeds of motion. The model can also be applied to the entire wind field of an individual storm to provide a two-dimensional field of the maximum wind during a given storm. Examples of each of these applications are presented.
Abstract
An empirical model for predicting the maximum wind of landfalling tropical cyclones is developed. The model is based upon the observation that the wind speed decay rate after landfall is proportional to the wind speed. Observations also indicate that the wind speed decays to a small, but nonzero, background wind speed. With these assumptions, the wind speed is determined from a simple two-parameter exponential decay model, which is a function of the wind speed at landfall and the time since landfall. A correction can also be added that accounts for differences between storms that move inland slowly and storms that move inland rapidly. The model parameters are determined from the National Hurricane Center best track intensities of all U.S. landfalling tropical cyclones south of 37°N for the period 196793. Three storms that made landfall in Florida prior to 1967 were also included in the sample. Results show that the two-parameter model explains 91% of the variance of the best track intensity changes. When the correction that accounts for variations in the distance inland is added, the model explains 93% of the variance.
This modal can be used for operational forecasting of the maximum winds of landfalling tropical cyclones. It can also be used to estimate the maximum inland penetration of hurricane force winds (or any wind speed threshold) for a given initial storm intensity. The maximum winds at an inland point will occur for a storm that moves inland perpendicular to the coastline. Under this assumption, the maximum wind at a fixed point becomes a function of the wind speed at landfall and the translational speed of motion. For planning purposes, maps of the maximum inland wind speed can be prepared for various initial storm intensities and speeds of motion. The model can also be applied to the entire wind field of an individual storm to provide a two-dimensional field of the maximum wind during a given storm. Examples of each of these applications are presented.
Abstract
A version of the Kaplan and DeMaria empirical model for predicting the decay of tropical cyclone 1-min maximum sustained surface winds after landfall is developed for the New England region. The original model was developed from the National Hurricane Center (NHC) best-track wind estimates for storms that made landfall in the United States south of 37°N from 1967 to 1993. In this note, a similar model is developed for U.S. storms north of 37°N, which primarily made landfall in New York or Rhode Island and then moved across New England. Because of the less frequent occurrence of New England tropical cyclones, it was necessary to include cases back to 1938 to obtain a reasonable sample size. In addition, because of the faster translational speed and the fairly rapid extratropical transition of the higher-latitude cases, it was necessary to estimate the wind speeds at 2-h intervals after landfall, rather than every 6 h, as in the NHC best track. For the model development, the estimates of the maximum sustained surface winds of nine landfalling storms (seven hurricanes and two tropical storms) at 2-h intervals were determined by an analysis of all available surface data. The wind observations were adjusted to account for variations in anemometer heights, averaging times, and exposures.
Results show that the winds in the northern model decayed more (less) rapidly than those of the southern model, when the winds just after landfall are greater (less) than 33 knots. It is hypothesized that this faster rate of decay is due to the higher terrain near the coast for the northern sample and to the more hostile environmental conditions (e.g., higher vertical wind shear). The slower decay rate when the winds fall below 33 knots in the northern model might be due to the availability of a baroclinic energy source as the storms undergo extratropical transition.
Abstract
A version of the Kaplan and DeMaria empirical model for predicting the decay of tropical cyclone 1-min maximum sustained surface winds after landfall is developed for the New England region. The original model was developed from the National Hurricane Center (NHC) best-track wind estimates for storms that made landfall in the United States south of 37°N from 1967 to 1993. In this note, a similar model is developed for U.S. storms north of 37°N, which primarily made landfall in New York or Rhode Island and then moved across New England. Because of the less frequent occurrence of New England tropical cyclones, it was necessary to include cases back to 1938 to obtain a reasonable sample size. In addition, because of the faster translational speed and the fairly rapid extratropical transition of the higher-latitude cases, it was necessary to estimate the wind speeds at 2-h intervals after landfall, rather than every 6 h, as in the NHC best track. For the model development, the estimates of the maximum sustained surface winds of nine landfalling storms (seven hurricanes and two tropical storms) at 2-h intervals were determined by an analysis of all available surface data. The wind observations were adjusted to account for variations in anemometer heights, averaging times, and exposures.
Results show that the winds in the northern model decayed more (less) rapidly than those of the southern model, when the winds just after landfall are greater (less) than 33 knots. It is hypothesized that this faster rate of decay is due to the higher terrain near the coast for the northern sample and to the more hostile environmental conditions (e.g., higher vertical wind shear). The slower decay rate when the winds fall below 33 knots in the northern model might be due to the availability of a baroclinic energy source as the storms undergo extratropical transition.
Abstract
An empirical relationship between climatological sea surface temperature (SST) and the maximum intensity of tropical cyclones in the North Atlantic basin is developed from a 31-year sample (1962–1992). This relationship is compared with the theoretical results described by Emanuel. The theoretical results are in agreement with the observations over a wide range of SST, provided that the tropopause temperature is assumed to be a function of SST. Each storm is examined to determine how close the observed intensity comes to the maximum possible intensity (MPI). Results show that only about 20% of Atlantic tropical cyclones reach 80% or more of their MPI at the time when they are the most intense. On average, storms reach about 55% of their MPI. Storms that are farther west and farther north tend to reach a larger fraction of their MPI. Storms are also more likely to reach a larger fraction of their MPI in August–November than in June–July. There is considerable interannual variability in the yearly average of the ratio of the observed maximum intensity to the MPI.
Abstract
An empirical relationship between climatological sea surface temperature (SST) and the maximum intensity of tropical cyclones in the North Atlantic basin is developed from a 31-year sample (1962–1992). This relationship is compared with the theoretical results described by Emanuel. The theoretical results are in agreement with the observations over a wide range of SST, provided that the tropopause temperature is assumed to be a function of SST. Each storm is examined to determine how close the observed intensity comes to the maximum possible intensity (MPI). Results show that only about 20% of Atlantic tropical cyclones reach 80% or more of their MPI at the time when they are the most intense. On average, storms reach about 55% of their MPI. Storms that are farther west and farther north tend to reach a larger fraction of their MPI. Storms are also more likely to reach a larger fraction of their MPI in August–November than in June–July. There is considerable interannual variability in the yearly average of the ratio of the observed maximum intensity to the MPI.
Abstract
A statistical model for predicting intensity changes of Atlantic tropical cyclones at 12, 24, 36, 48, and 72 h is described. The model was developed using a standard multiple regression technique with climatological, persistence, and synoptic predictors. The model developmental sample includes all of the named Atlantic tropical cyclones from 1989 to 1992, with a few additional cases from 1982 to 1988. The sample includes only the times when the storms were over the ocean. The four primary predictors are 1) the difference between the current storm intensity and an estimate of the maximum possible intensity determined from the sea surface temperature, 2) the vertical shear of the horizontal wind, 3) persistence, and 4) the flux convergence of eddy angular momentum evaluated at 200 mb. The sea surface temperature and vertical shear variables are averaged along the track of the storm during the forecast period. The sea surface temperatures along the storm track are determined from monthly climatological analyses linearly interpolated to the position and date of the storm. The vertical shear values along the track of the storm are estimated using the synoptic analysis at the beginning of the forecast period. All other predictors are evaluated at the beginning of the forecast period.
The model is tested using a jackknife procedure where the regression coefficients for a particular tropical cyclone are determined with all of the forecasts for that storm removed from the sample. Operational estimates of the storm track and initial storm intensity are used in place of best track information in the jackknife procedure. Results show that the average intensity errors are 10%–15% smaller than the errors from a model that uses only climatology and persistence (SHIFOR), and the error differences at 24, 36, and 48 h are statistically significant at the 99% level.
Abstract
A statistical model for predicting intensity changes of Atlantic tropical cyclones at 12, 24, 36, 48, and 72 h is described. The model was developed using a standard multiple regression technique with climatological, persistence, and synoptic predictors. The model developmental sample includes all of the named Atlantic tropical cyclones from 1989 to 1992, with a few additional cases from 1982 to 1988. The sample includes only the times when the storms were over the ocean. The four primary predictors are 1) the difference between the current storm intensity and an estimate of the maximum possible intensity determined from the sea surface temperature, 2) the vertical shear of the horizontal wind, 3) persistence, and 4) the flux convergence of eddy angular momentum evaluated at 200 mb. The sea surface temperature and vertical shear variables are averaged along the track of the storm during the forecast period. The sea surface temperatures along the storm track are determined from monthly climatological analyses linearly interpolated to the position and date of the storm. The vertical shear values along the track of the storm are estimated using the synoptic analysis at the beginning of the forecast period. All other predictors are evaluated at the beginning of the forecast period.
The model is tested using a jackknife procedure where the regression coefficients for a particular tropical cyclone are determined with all of the forecasts for that storm removed from the sample. Operational estimates of the storm track and initial storm intensity are used in place of best track information in the jackknife procedure. Results show that the average intensity errors are 10%–15% smaller than the errors from a model that uses only climatology and persistence (SHIFOR), and the error differences at 24, 36, and 48 h are statistically significant at the 99% level.
Abstract
The National Hurricane Center (NHC) and Statistical Hurricane Intensity Prediction Scheme (SHIPS) databases are employed to examine the large-scale characteristics of rapidly intensifying Atlantic basin tropical cyclones. In this study, rapid intensification (RI) is defined as approximately the 95th percentile of over-water 24-h intensity changes of Atlantic basin tropical cyclones that developed from 1989 to 2000. This equates to a maximum sustained surface wind speed increase of 15.4 m s−1 (30 kt) over a 24-h period. It is shown that 31% of all tropical cyclones, 60% of all hurricanes, 83% of all major hurricanes, and all category 4 and 5 hurricanes underwent RI at least once during their lifetimes.
The mean initial (t = 0 h) conditions of cases that undergo RI are compared to those of the non-RI cases. These comparisons show that the RI cases form farther south and west and have a more westward component of motion than the non-RI cases. In addition, the RI cases are typically intensifying at a faster rate during the previous 12 h than the non-RI cases. The statistical analysis also shows that the RI cases are further from their maximum potential intensity and form in regions with warmer SSTs and higher lower-tropospheric relative humidity than the non-RI cases. The RI cases are also embedded in regions where the upper-level flow is more easterly and the vertical shear and upper-level forcing from troughs or cold lows is weaker than is observed for the non-RI cases. Finally, the RI cases tend to move with the flow within a higher layer of the atmosphere than the non-RI cases.
A simple technique for estimating the probability of RI is described. Estimates of the probability of RI are determined using the predictors for which statistically significant differences are found between the RI and non-RI cases. Estimates of the probability of RI are also determined by combining the five predictors that had the highest individual probabilities of RI. The probability of RI increases from 1% to 41% when the total number of thresholds satisfied increases from zero to five. This simple technique was used in real time for the first time during the 2001 Atlantic hurricane season as part of the Joint Hurricane Testbed (JHT).
Abstract
The National Hurricane Center (NHC) and Statistical Hurricane Intensity Prediction Scheme (SHIPS) databases are employed to examine the large-scale characteristics of rapidly intensifying Atlantic basin tropical cyclones. In this study, rapid intensification (RI) is defined as approximately the 95th percentile of over-water 24-h intensity changes of Atlantic basin tropical cyclones that developed from 1989 to 2000. This equates to a maximum sustained surface wind speed increase of 15.4 m s−1 (30 kt) over a 24-h period. It is shown that 31% of all tropical cyclones, 60% of all hurricanes, 83% of all major hurricanes, and all category 4 and 5 hurricanes underwent RI at least once during their lifetimes.
The mean initial (t = 0 h) conditions of cases that undergo RI are compared to those of the non-RI cases. These comparisons show that the RI cases form farther south and west and have a more westward component of motion than the non-RI cases. In addition, the RI cases are typically intensifying at a faster rate during the previous 12 h than the non-RI cases. The statistical analysis also shows that the RI cases are further from their maximum potential intensity and form in regions with warmer SSTs and higher lower-tropospheric relative humidity than the non-RI cases. The RI cases are also embedded in regions where the upper-level flow is more easterly and the vertical shear and upper-level forcing from troughs or cold lows is weaker than is observed for the non-RI cases. Finally, the RI cases tend to move with the flow within a higher layer of the atmosphere than the non-RI cases.
A simple technique for estimating the probability of RI is described. Estimates of the probability of RI are determined using the predictors for which statistically significant differences are found between the RI and non-RI cases. Estimates of the probability of RI are also determined by combining the five predictors that had the highest individual probabilities of RI. The probability of RI increases from 1% to 41% when the total number of thresholds satisfied increases from zero to five. This simple technique was used in real time for the first time during the 2001 Atlantic hurricane season as part of the Joint Hurricane Testbed (JHT).
Abstract
Updates to the Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin are described. SHIPS combines climatological, persistence, and synoptic predictors to forecast intensity changes using a multiple regression technique. The original version of the model was developed for the Atlantic basin and was run in near–real time at the Hurricane Research Division beginning in 1993. In 1996, the model was incorporated into the National Hurricane Center operational forecast cycle, and a version was developed for the eastern North Pacific basin. Analysis of the forecast errors for the period 1993–96 shows that SHIPS had little skill relative to forecasts based upon climatology and persistence. However, SHIPS had significant skill in both the Atlantic and east Pacific basins during the 1997 hurricane season.
The regression coefficients for SHIPS were rederived after each hurricane season since 1993 so that the previous season’s forecast cases were included in the sample. Modifications to the model itself were also made after each season. Prior to the 1997 season, the synoptic predictors were determined only from an analysis at the beginning of the forecast period. Thus, SHIPS could be considered a “statistical–synoptic” model. For the 1997 season, methods were developed to remove the tropical cyclone circulation from the global model analyses and to include synoptic predictors from forecast fields, so the current version of SHIPS is a “statistical–dynamical” model. It was only after the modifications for 1997 that the model showed significant intensity forecast skill.
Abstract
Updates to the Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin are described. SHIPS combines climatological, persistence, and synoptic predictors to forecast intensity changes using a multiple regression technique. The original version of the model was developed for the Atlantic basin and was run in near–real time at the Hurricane Research Division beginning in 1993. In 1996, the model was incorporated into the National Hurricane Center operational forecast cycle, and a version was developed for the eastern North Pacific basin. Analysis of the forecast errors for the period 1993–96 shows that SHIPS had little skill relative to forecasts based upon climatology and persistence. However, SHIPS had significant skill in both the Atlantic and east Pacific basins during the 1997 hurricane season.
The regression coefficients for SHIPS were rederived after each hurricane season since 1993 so that the previous season’s forecast cases were included in the sample. Modifications to the model itself were also made after each season. Prior to the 1997 season, the synoptic predictors were determined only from an analysis at the beginning of the forecast period. Thus, SHIPS could be considered a “statistical–synoptic” model. For the 1997 season, methods were developed to remove the tropical cyclone circulation from the global model analyses and to include synoptic predictors from forecast fields, so the current version of SHIPS is a “statistical–dynamical” model. It was only after the modifications for 1997 that the model showed significant intensity forecast skill.
Abstract
A method is developed to adjust the Kaplan and DeMaria tropical cyclone inland wind decay model for storms that move over narrow landmasses. The basic assumption that the wind speed decay rate after landfall is proportional to the wind speed is modified to include a factor equal to the fraction of the storm circulation that is over land. The storm circulation is defined as a circular area with a fixed radius. Application of the modified model to Atlantic Ocean cases from 1967 to 2003 showed that a circulation radius of 110 km minimizes the bias in the total sample of landfalling cases and reduces the mean absolute error of the predicted maximum winds by about 12%. This radius is about 2 times the radius of maximum wind of a typical Atlantic tropical cyclone. The modified decay model was applied to the Statistical Hurricane Intensity Prediction Scheme (SHIPS), which uses the Kaplan and DeMaria decay model to adjust the intensity for the portion of the predicted track that is over land. The modified decay model reduced the intensity forecast errors by up to 8% relative to the original decay model for cases from 2001 to 2004 in which the storm was within 500 km from land.
Abstract
A method is developed to adjust the Kaplan and DeMaria tropical cyclone inland wind decay model for storms that move over narrow landmasses. The basic assumption that the wind speed decay rate after landfall is proportional to the wind speed is modified to include a factor equal to the fraction of the storm circulation that is over land. The storm circulation is defined as a circular area with a fixed radius. Application of the modified model to Atlantic Ocean cases from 1967 to 2003 showed that a circulation radius of 110 km minimizes the bias in the total sample of landfalling cases and reduces the mean absolute error of the predicted maximum winds by about 12%. This radius is about 2 times the radius of maximum wind of a typical Atlantic tropical cyclone. The modified decay model was applied to the Statistical Hurricane Intensity Prediction Scheme (SHIPS), which uses the Kaplan and DeMaria decay model to adjust the intensity for the portion of the predicted track that is over land. The modified decay model reduced the intensity forecast errors by up to 8% relative to the original decay model for cases from 2001 to 2004 in which the storm was within 500 km from land.
Abstract
A revised rapid intensity index (RII) is developed for the Atlantic and eastern North Pacific basins. The RII uses large-scale predictors from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) to estimate the probability of rapid intensification (RI) over the succeeding 24 h utilizing linear discriminant analysis. Separate versions of the RII are developed for the 25-, 30-, and 35-kt RI thresholds, which represent the 90th (88th), 94th (92nd), and 97th (94th) percentiles of 24-h overwater intensity changes of tropical and subtropical cyclones in the Atlantic (eastern North Pacific) basins from 1989 to 2006, respectively. The revised RII became operational at the NHC prior to the 2008 hurricane season.
The relative importance of the individual RI predictors is shown to differ between the two basins. Specifically, the previous 12-h intensity change, upper-level divergence, and vertical shear have the highest weights for the Atlantic basin, while the previous 12-h intensity change, symmetry of inner-core convection, and the difference in a system’s current and maximum potential intensity are weighted highest in the eastern North Pacific basin.
A verification of independent forecasts from the 2006 and 2007 hurricane seasons shows that the probabilistic RII forecasts are generally skillful in both basins when compared to climatology. Moreover, when employed in a deterministic manner, the RII forecasts were superior to all other available operational intensity guidance in terms of the probability of detection (POD) and false alarm ratio (FAR). Specifically, the POD for the RII ranged from 15% to 59% (53% to 73%) while the FAR ranged from 71% to 85% (53% to 79%) in the Atlantic (eastern North Pacific) basins, respectively, for the three RI thresholds studied. Nevertheless, the modest POD and relatively high FAR of the RII and other intensity guidance demonstrate the difficulty of predicting RI, particularly in the Atlantic basin.
Abstract
A revised rapid intensity index (RII) is developed for the Atlantic and eastern North Pacific basins. The RII uses large-scale predictors from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) to estimate the probability of rapid intensification (RI) over the succeeding 24 h utilizing linear discriminant analysis. Separate versions of the RII are developed for the 25-, 30-, and 35-kt RI thresholds, which represent the 90th (88th), 94th (92nd), and 97th (94th) percentiles of 24-h overwater intensity changes of tropical and subtropical cyclones in the Atlantic (eastern North Pacific) basins from 1989 to 2006, respectively. The revised RII became operational at the NHC prior to the 2008 hurricane season.
The relative importance of the individual RI predictors is shown to differ between the two basins. Specifically, the previous 12-h intensity change, upper-level divergence, and vertical shear have the highest weights for the Atlantic basin, while the previous 12-h intensity change, symmetry of inner-core convection, and the difference in a system’s current and maximum potential intensity are weighted highest in the eastern North Pacific basin.
A verification of independent forecasts from the 2006 and 2007 hurricane seasons shows that the probabilistic RII forecasts are generally skillful in both basins when compared to climatology. Moreover, when employed in a deterministic manner, the RII forecasts were superior to all other available operational intensity guidance in terms of the probability of detection (POD) and false alarm ratio (FAR). Specifically, the POD for the RII ranged from 15% to 59% (53% to 73%) while the FAR ranged from 71% to 85% (53% to 79%) in the Atlantic (eastern North Pacific) basins, respectively, for the three RI thresholds studied. Nevertheless, the modest POD and relatively high FAR of the RII and other intensity guidance demonstrate the difficulty of predicting RI, particularly in the Atlantic basin.
Abstract
Aircraft, rawinsonde, satellite, ship, and buoy data collected over a 40-h period were composited to analyze the inflow-layer structure of Hurricane Frederic (1979) within a radius of 10° latitude of the storm center. To improve the quality of the composite analyses, the low-level cloud-motion winds (CMWs) employed in this study were assigned a level of best fit (LBF). An LBF was assigned to each CMW by determining the level at which the closest agreement existed between CMW and ground-truth wind data (e.g., rawinsonde, aircraft, ship, and buoy). The CMWs were then adjusted vertically to uniform analysis levels, combined with ground-truth wind data, and objectively analyzed. These objectively analyzed wind fields were used to obtain kinematically derived fields of vorticity, divergence, and vertical velocity. An angular-momentum budget was also computed to obtain estimates of surface drag coefficients.
The low-level CMWs in this study were found to have LBFs ranging from 300 to 4000 m. It was shown that judicious use of this knowledge leads to substantial improvements in the estimates of the radial flow, but relatively insignificant improvement in the estimates of the rotational component of the wind. These results suggest that the common practice of assigning all low-level CMWs in a tropical cyclone environment to a constant level of 900–950 mb (approximately 500–1000 m) is probably appropriate for computations that depend primarily upon the rotational wind component. These findings, however, also indicate that failure to account for variations in LBFs of low-level CMWs could result in substantial errors in calculations that are sensitive to the radial wind.
The kinematic analyses showed that the asymmetric wind structure observed previously in studies of Frederic's inner core extends out to at least 10° latitude radius. Frederic was characterized by strong northeast-southwest radial flow through the storm and a pronounced northwest-southeast asymmetry of the tangential wind field at each analysis level. Analysis of Frederic's surface-560-m angular-momentum budget showed that the mean value of the surface drag coefficient beyond 2° radius was approximately 1.8 × 10−3.
Abstract
Aircraft, rawinsonde, satellite, ship, and buoy data collected over a 40-h period were composited to analyze the inflow-layer structure of Hurricane Frederic (1979) within a radius of 10° latitude of the storm center. To improve the quality of the composite analyses, the low-level cloud-motion winds (CMWs) employed in this study were assigned a level of best fit (LBF). An LBF was assigned to each CMW by determining the level at which the closest agreement existed between CMW and ground-truth wind data (e.g., rawinsonde, aircraft, ship, and buoy). The CMWs were then adjusted vertically to uniform analysis levels, combined with ground-truth wind data, and objectively analyzed. These objectively analyzed wind fields were used to obtain kinematically derived fields of vorticity, divergence, and vertical velocity. An angular-momentum budget was also computed to obtain estimates of surface drag coefficients.
The low-level CMWs in this study were found to have LBFs ranging from 300 to 4000 m. It was shown that judicious use of this knowledge leads to substantial improvements in the estimates of the radial flow, but relatively insignificant improvement in the estimates of the rotational component of the wind. These results suggest that the common practice of assigning all low-level CMWs in a tropical cyclone environment to a constant level of 900–950 mb (approximately 500–1000 m) is probably appropriate for computations that depend primarily upon the rotational wind component. These findings, however, also indicate that failure to account for variations in LBFs of low-level CMWs could result in substantial errors in calculations that are sensitive to the radial wind.
The kinematic analyses showed that the asymmetric wind structure observed previously in studies of Frederic's inner core extends out to at least 10° latitude radius. Frederic was characterized by strong northeast-southwest radial flow through the storm and a pronounced northwest-southeast asymmetry of the tangential wind field at each analysis level. Analysis of Frederic's surface-560-m angular-momentum budget showed that the mean value of the surface drag coefficient beyond 2° radius was approximately 1.8 × 10−3.
Abstract
A series of mesoscale numerical simulations of the AVE-SESAME I case (10 April 1979) were performed in order to analyze the dynamical processes that result in the production of an environment favorable for the development of severe local convective storms. The investigation focused on the relative contributions of quasi-adiabatic inertial and isallobaric adjustments attributable to the geometry of the tropospheric flow and the fluxes of heat, moisture and momentum from the surface of the earth.
The model simulations support many of the conclusions deduced by Kocin et al. in their analyses of the observations taken during the field experiment. The quasi-adiabatic simulations support the existence of a coupled upper-tropospheric and lower-tropospheric jet streak system. However, the dynamical coupling is more complex than the straight line jet streak model utilized by Uccellini and Johnson. The departures are attributable to two sources. First, there is a time-varying curvature in the exit region due to the propagation of a meso-αscale trough through the area while a longer wave trough remains relatively stationary. Second, the exit region experiences significant changes in the mass field due to the presence of differential horizontal thermal advection. These two effects produce significant alterations to the classical exit region patterns of vertical motion and man divergence. In addition, them processes phase with a pattern of significant horizontal variations in the fluxes of heat, moisture and momentum in the planetary boundary layer. The combination of these processes result in the amplification of the low-level pressure tendencies and an increase in the strength of the low-level jet streak.
The combination of mass-momentum adjustments associated with the jet streak system and low-level flux gradients results in the creation of significant amounts of buoyant energy and the vertical motion necessary for its release. The simulation experiments suggest that the 6 h increase in buoyant energy over the areas that subsequently experience convection is approximately half the result of the quasi-adiabatic processes and half the result of the surface fluxes of heat and moisture.
This study has three major contributions. First, it indicates the possible importance of the phasing of deep tropospheric mass-momentum adjustments with differential surface fluxes of heat and momentum. Second, it extends the understanding of jet-streak exit region dynamics to the case of cyclonically curved flow in the presence of differential horizontal thermal advection. Third, it reveals the rapidity with which circulation patterns associated with a jet streak exit region can change.
Abstract
A series of mesoscale numerical simulations of the AVE-SESAME I case (10 April 1979) were performed in order to analyze the dynamical processes that result in the production of an environment favorable for the development of severe local convective storms. The investigation focused on the relative contributions of quasi-adiabatic inertial and isallobaric adjustments attributable to the geometry of the tropospheric flow and the fluxes of heat, moisture and momentum from the surface of the earth.
The model simulations support many of the conclusions deduced by Kocin et al. in their analyses of the observations taken during the field experiment. The quasi-adiabatic simulations support the existence of a coupled upper-tropospheric and lower-tropospheric jet streak system. However, the dynamical coupling is more complex than the straight line jet streak model utilized by Uccellini and Johnson. The departures are attributable to two sources. First, there is a time-varying curvature in the exit region due to the propagation of a meso-αscale trough through the area while a longer wave trough remains relatively stationary. Second, the exit region experiences significant changes in the mass field due to the presence of differential horizontal thermal advection. These two effects produce significant alterations to the classical exit region patterns of vertical motion and man divergence. In addition, them processes phase with a pattern of significant horizontal variations in the fluxes of heat, moisture and momentum in the planetary boundary layer. The combination of these processes result in the amplification of the low-level pressure tendencies and an increase in the strength of the low-level jet streak.
The combination of mass-momentum adjustments associated with the jet streak system and low-level flux gradients results in the creation of significant amounts of buoyant energy and the vertical motion necessary for its release. The simulation experiments suggest that the 6 h increase in buoyant energy over the areas that subsequently experience convection is approximately half the result of the quasi-adiabatic processes and half the result of the surface fluxes of heat and moisture.
This study has three major contributions. First, it indicates the possible importance of the phasing of deep tropospheric mass-momentum adjustments with differential surface fluxes of heat and momentum. Second, it extends the understanding of jet-streak exit region dynamics to the case of cyclonically curved flow in the presence of differential horizontal thermal advection. Third, it reveals the rapidity with which circulation patterns associated with a jet streak exit region can change.