Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: John Prytherch x
  • Refine by Access: All Content x
Clear All Modify Search
Michael Tjernström
,
Matthew D. Shupe
,
Ian M. Brooks
,
Peggy Achtert
,
John Prytherch
, and
Joseph Sedlar

Abstract

During the Arctic Clouds in Summer Experiment (ACSE) in summer 2014 a weeklong period of warm-air advection over melting sea ice, with the formation of a strong surface temperature inversion and dense fog, was observed. Based on an analysis of the surface energy budget, we formulated the hypothesis that, because of the airmass transformation, additional surface heating occurs during warm-air intrusions in a zone near the ice edge. To test this hypothesis, we explore all cases with surface inversions occurring during ACSE and then characterize the inversions in detail. We find that they always occur with advection from the south and are associated with subsidence. Analyzing only inversion cases over sea ice, we find two categories: one with increasing moisture in the inversion and one with constant or decreasing moisture with height. During surface inversions with increasing moisture with height, an extra 10–25 W m−2 of surface heating was observed, compared to cases without surface inversions; the surface turbulent heat flux was the largest single term. Cases with less moisture in the inversion were often cloud free and the extra solar radiation plus the turbulent surface heat flux caused by the inversion was roughly balanced by the loss of net longwave radiation.

Full access
Georgia Sotiropoulou
,
Michael Tjernström
,
Joseph Sedlar
,
Peggy Achtert
,
Barbara J. Brooks
,
Ian M. Brooks
,
P. Ola G. Persson
,
John Prytherch
,
Dominic J. Salisbury
,
Matthew D. Shupe
,
Paul E. Johnston
, and
Dan Wolfe

Abstract

The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly, leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that knowledge derived from measurements taken within the pan-Arctic area and on the central ice pack does not necessarily apply closer to the ice edge. This study offers an insight into the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.

Full access
Ian M. Brooks
,
Margaret J. Yelland
,
Robert C. Upstill-Goddard
,
Philip D. Nightingale
,
Steve Archer
,
Eric d'Asaro
,
Rachael Beale
,
Cory Beatty
,
Byron Blomquist
,
A. Anthony Bloom
,
Barbara J. Brooks
,
John Cluderay
,
David Coles
,
John Dacey
,
Michael DeGrandpre
,
Jo Dixon
,
William M. Drennan
,
Joseph Gabriele
,
Laura Goldson
,
Nick Hardman-Mountford
,
Martin K. Hill
,
Matt Horn
,
Ping-Chang Hsueh
,
Barry Huebert
,
Gerrit de Leeuw
,
Timothy G. Leighton
,
Malcolm Liddicoat
,
Justin J. N. Lingard
,
Craig McNeil
,
James B. McQuaid
,
Ben I. Moat
,
Gerald Moore
,
Craig Neill
,
Sarah J. Norris
,
Simon O'Doherty
,
Robin W. Pascal
,
John Prytherch
,
Mike Rebozo
,
Erik Sahlee
,
Matt Salter
,
Ute Schuster
,
Ingunn Skjelvan
,
Hans Slagter
,
Michael H. Smith
,
Paul D. Smith
,
Meric Srokosz
,
John A. Stephens
,
Peter K. Taylor
,
Maciej Telszewski
,
Roisin Walsh
,
Brian Ward
,
David K. Woolf
,
Dickon Young
, and
Henk Zemmelink

As part of the U.K. contribution to the international Surface Ocean-Lower Atmosphere Study, a series of three related projects—DOGEE, SEASAW, and HiWASE—undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies share a common goal: to reduce the high degree of uncertainty in current parameterization schemes. The wide variety of measurements made during the studies, which incorporated tracer and surfactant release experiments, included direct eddy correlation fluxes, detailed wave spectra, wind history, photographic retrievals of whitecap fraction, aerosolsize spectra and composition, surfactant concentration, and bubble populations in the ocean mixed layer. Measurements were made during three cruises in the northeast Atlantic on the RRS Discovery during 2006 and 2007; a fourth campaign has been making continuous measurements on the Norwegian weather ship Polarfront since September 2006. This paper provides an overview of the three projects and some of the highlights of the measurement campaigns.

Full access
Ian M. Brooks
,
Margaret J. Yelland
,
Robert C. Upstill-Goddard
,
Philip D. Nightingale
,
Steve Archer
,
Eric d'Asaro
,
Rachael Beale
,
Cory Beatty
,
Byron Blomquist
,
A. Anthony Bloom
,
Barbara J. Brooks
,
John Cluderay
,
David Coles
,
John Dacey
,
Michael Degrandpre
,
Jo Dixon
,
William M. Drennan
,
Joseph Gabriele
,
Laura Goldson
,
Nick Hardman-Mountford
,
Martin K. Hill
,
Matt Horn
,
Ping-Chang Hsueh
,
Barry Huebert
,
Gerrit De Leeuw
,
Timothy G. Leighton
,
Malcolm Liddicoat
,
Justin J. N. Lingard
,
Craig Mcneil
,
James B. Mcquaid
,
Ben I. Moat
,
Gerald Moore
,
Craig Neill
,
Sarah J. Norris
,
Simon O'Doherty
,
Robin W. Pascal
,
John Prytherch
,
Mike Rebozo
,
Erik Sahlee
,
Matt Salter
,
Ute Schuster
,
Ingunn Skjelvan
,
Hans Slagter
,
Michael H. Smith
,
Paul D. Smith
,
Meric Srokosz
,
John A. Stephens
,
Peter K. Taylor
,
Maciej Telszewski
,
Roisin Walsh
,
Brian Ward
,
David K. Woolf
,
Dickon Young
, and
Henk Zemmelink

Abstract

No Abstract available.

Full access