Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: John S. Kimball x
  • All content x
Clear All Modify Search
Meng Zhao, Geruo A, Isabella Velicogna, and John S. Kimball

Abstract

A new monthly global drought severity index (DSI) dataset developed from satellite-observed time-variable terrestrial water storage changes from the Gravity Recovery and Climate Experiment (GRACE) is presented. The GRACE-DSI record spans from 2002 to 2014 and will be extended with the ongoing GRACE and scheduled GRACE Follow-On missions. The GRACE-DSI captures major global drought events during the past decade and shows overall favorable spatiotemporal agreement with other commonly used drought metrics, including the Palmer drought severity index (PDSI) and the standardized precipitation evapotranspiration index (SPEI). The assets of the GRACE-DSI are 1) that it is based solely on satellite gravimetric observations and thus provides globally consistent drought monitoring, particularly where sparse ground observations (especially precipitation) constrain the use of traditional model-based monitoring methods; 2) that it has a large footprint (~350 km), so it is suitable for assessing regional- and global-scale drought; and 3) that it is sensitive to the overall terrestrial water storage component of the hydrologic cycle and therefore complements existing drought monitoring datasets by providing information about groundwater storage changes, which affect soil moisture recharge and drought recovery. In Australia, it is demonstrated that combining GRACE-DSI with other satellite environmental datasets improves the characterization of the 2000s “Millennium Drought” at shallow surface and subsurface soil layers. Contrasting vegetation greenness response to surface and underground water supply changes between western and eastern Australia is found, which might indicate that these regions have different relative plant rooting depths.

Full access
Meng Zhao, Geruo A, Isabella Velicogna, and John S. Kimball

Abstract

Drought monitoring is important for characterizing the timing, extent, and severity of drought for effective mitigation and water management. Presented here is a novel satellite-based drought severity index (DSI) for regional monitoring derived using time-variable terrestrial water storage changes from the Gravity Recovery and Climate Experiment (GRACE). The GRACE-DSI enables drought feature comparison across regions and periods, it is unaffected by uncertainties associated with soil water balance models and meteorological forcing data, and it incorporates water storage changes from human impacts including groundwater withdrawals that modify land surface processes and impact water management. Here, the underlying algorithm is described, and the GRACE-DSI performance in the continental United States during 2002–14 is evaluated. It is found that the GRACE-DSI captures documented regional drought events and shows favorable spatial and temporal agreement with the monthly Palmer Drought Severity Index (PDSI) and the U.S. Drought Monitor (USDM). The GRACE-DSI also correlates well with a satellite-based normalized difference vegetation index (NDVI), indicating sensitivity to plant-available water supply changes affecting vegetation growth. Because the GRACE-DSI captures changes in total terrestrial water storage, it complements more traditional drought monitoring tools such as the PDSI by providing information about deeper water storage changes that affect soil moisture recharge and drought recovery. The GRACE-DSI shows potential for globally consistent and effective drought monitoring, particularly where sparse ground observations (especially precipitation) limit the use of traditional drought monitoring methods.

Full access
Michael A. Rawlins, Raymond S. Bradley, Henry F. Diaz, John S. Kimball, and David A. Robinson

Abstract

This study used air temperatures from a suite of regional climate models participating in the North American Climate Change Assessment Program (NARCCAP) together with two atmospheric reanalysis datasets to investigate changes in freezing days (defined as days with daily average temperature below freezing) likely to occur between 30-yr baseline (1971–2000) and midcentury (2041–70) periods across most of North America. Changes in NARCCAP ensemble mean winter temperature show a strong gradient with latitude, with warming of over 4°C near Hudson Bay. The decline in freezing days ranges from less than 10 days across north-central Canada to nearly 90 days in the warmest areas of the continent that currently undergo seasonally freezing conditions. The area experiencing freezing days contracts by 0.9–1.0 × 106 km2 (5.7%–6.4% of the total area). Areas with mean annual temperature between 2° and 6°C and a relatively low rate of change in climatological daily temperatures (<0.2°C day) near the time of spring thaw will encounter the greatest decreases in freezing days. Advances in the timing of spring thaw will exceed the delay in fall freeze across much of the United States, with the reverse pattern likely over most of Canada.

Full access
Kyle C. McDonald, John S. Kimball, Eni Njoku, Reiner Zimmermann, and Maosheng Zhao

Abstract

Evidence is presented from the satellite microwave remote sensing record that the timing of seasonal thawing and subsequent initiation of the growing season in early spring has advanced by approximately 8 days from 1988 to 2001 for the pan-Arctic basin and Alaska. These trends are highly variable across the region, with North America experiencing a larger advance relative to Eurasia and the entire region. Interannual variability in the timing of spring thaw as detected from the remote sensing record corresponded directly to seasonal anomalies in mean atmospheric CO2 concentrations for the region, including the timing of the seasonal draw down of atmospheric CO2 from terrestrial net primary productivity (NPP) in spring, and seasonal maximum and minimum CO2 concentrations. The timing of the seasonal thaw for a given year was also found to be a significant (P < 0.01) predictor of the seasonal amplitude of atmospheric CO2 for the following year. These results imply that the timing of seasonal thawing in spring has a major impact on terrestrial NPP and net carbon exchange at high latitudes. The initiation of the growing season has also been occurring earlier, on average, over the time period addressed in this study and may be a major mechanism driving observed atmospheric CO2 seasonal cycle advances, vegetation greening, and enhanced productivity for the northern high latitudes.

Full access
Yonghong Yi, John S. Kimball, Lucas A. Jones, Rolf H. Reichle, and Kyle C. McDonald

Abstract

The authors evaluated several land surface variables from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product that are important for global ecological and hydrological studies, including daily maximum (T max) and minimum (T min) surface air temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and surface soil moisture. The MERRA results were evaluated against in situ measurements, similar global products derived from satellite microwave [the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E)] remote sensing and earlier generation atmospheric analysis [Goddard Earth Observing System version 4 (GEOS-4)] products. Relative to GEOS-4, MERRA is generally warmer (~0.5°C for T min and T max) and drier (~50 Pa for VPD) for low- and middle-latitude regions (<50°N) associated with reduced cloudiness and increased SWrad. MERRA and AMSR-E temperatures show relatively large differences (>3°C) in mountainous areas, tropical forest, and desert regions. Surface soil moisture estimates from MERRA (0–2-cm depth) and two AMSR-E products (~0–1-cm depth) are moderately correlated (R ~ 0.4) for middle-latitude regions with low to moderate vegetation biomass. The MERRA derived surface soil moisture also corresponds favorably with in situ observations (R = 0.53 ± 0.01, p < 0.001) in the midlatitudes, where its accuracy is directly proportional to the quality of MERRA precipitation. In the high latitudes, MERRA shows inconsistent soil moisture seasonal dynamics relative to in situ observations. The study’s results suggest that satellite microwave remote sensing may contribute to improved reanalysis accuracy where surface meteorological observations are sparse and in cold land regions subject to seasonal freeze–thaw transitions. The upcoming NASA Soil Moisture Active Passive (SMAP) mission is expected to improve MERRA-type reanalysis accuracy by providing accurate global mapping of freeze–thaw state and surface soil moisture with 2–3-day temporal fidelity and enhanced (≤9 km) spatial resolution.

Full access
Hotaek Park, Yasuhiro Yoshikawa, Kazuhiro Oshima, Youngwook Kim, Thanh Ngo-Duc, John S. Kimball, and Daqing Yang

Abstract

A land process model [the coupled hydrological and biogeochemical model (CHANGE)] is used to quantitatively assess changes in the ice phenology, thickness, and volume of terrestrial Arctic rivers from 1979 to 2009. The CHANGE model was coupled with a river routing and discharge model enabling explicit representation of river ice and water temperature dynamics. Model-simulated river ice phenological dates and thickness were generally consistent with in situ river ice data and landscape freeze–thaw (FT) satellite observations. Climate data indicated an increasing trend in winter surface air temperature (SAT) over the pan-Arctic during the study period. Nevertheless, the river ice thickness simulations exhibited a thickening regional trend independent of SAT warming, and associated with less insulation and cooling of underlying river ice by thinning snow cover. Deeper snow depth (SND) combined with SAT warming decreased simulated ice thickness, especially for Siberian rivers, where ice thickness is more strongly correlated with SND than SAT. Overall, the Arctic river ice simulations indicated regional trends toward later fall freezeup, earlier spring breakup, and consequently a longer annual ice-free period. The simulated ice phenological dates were significantly correlated with seasonal SAT warming. It is found that SND is an important factor for winter river ice growth, while ice phenological timing is dominated by seasonal SAT. The mean total Arctic river ice volume simulated from CHANGE was 54.1 km3 based on the annual maximum ice thickness in individual grid cells, while river ice volume for the pan-Arctic rivers decreased by 2.82 km3 (0.5%) over the 1979–2009 record. Arctic river ice is shrinking as a consequence of regional climate warming and coincident with other cryospheric components, including permafrost, glaciers, and sea ice.

Full access
Leila Farhadi, Rolf H. Reichle, Gabriëlle J. M. De Lannoy, and John S. Kimball

Abstract

The land surface freeze–thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, an F/T assimilation algorithm was developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5), modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. The F/T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F/T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F/T observations. The assimilation of perfect (error free) F/T observations reduced the root-mean-square errors (RMSEs) of surface temperature and soil temperature by 0.206° and 0.061°C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7% and 3.1%, respectively). For a maximum classification error CEmax of 10% in the synthetic F/T observations, the F/T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178° and 0.036°C, respectively. For CEmax = 20%, the F/T assimilation still reduces the RMSE of model surface temperature estimates by 0.149°C but yields no improvement over the model soil temperature estimates. The F/T assimilation scheme is being developed to exploit planned F/T products from the NASA Soil Moisture Active Passive (SMAP) mission.

Full access
Qiaozhen Mu, Maosheng Zhao, John S. Kimball, Nathan G. McDowell, and Steven W. Running

Regional drought and flooding from extreme climatic events are increasing in frequency and severity, with significant adverse ecosocial impacts. Detecting and monitoring drought at regional to global scales remains challenging, despite the availability of various drought indices and widespread availability of potentially synergistic global satellite observational records. The authors have developed a method to generate a near-real-time remotely sensed drought severity index (DSI) to monitor and detect drought globally at 1-km spatial resolution and regular 8-day, monthly, and annual frequencies. The new DSI integrates and exploits information from current operational satellite-based terrestrial evapo-transpiration (ET) and vegetation greenness index [normalized difference vegetation index (NDVI)] products, which are sensitive to vegetation water stress. Specifically, this approach determines the annual DSI departure from its normal (2000–11) using the remotely sensed ratio of ET to potential ET (PET) and NDVI. The DSI results were derived globally and captured documented major regional droughts over the last decade, including severe events in Europe (2003), the Amazon (2005 and 2010), and Russia (2010). The DSI corresponded favorably (correlation coefficient r = 0.43) with the precipitation-based Palmer drought severity index (PDSI), while both indices captured similar wetting and drying patterns. The DSI was also correlated with satellite-based vegetation net primary production (NPP) records, indicating that the combined use of these products may be useful for assessing water supply and ecosystem interactions, including drought impacts on crop yields and forest productivity. The remotely sensed global terrestrial DSI enhances capabilities for nearreal-time drought monitoring to assist decision makers in regional drought assessment and mitigation efforts, and without many of the constraints of more traditional drought monitoring methods.

Full access
Rolf H. Reichle, Qing Liu, Joseph V. Ardizzone, Wade T. Crow, Gabrielle J. M. De Lannoy, Jianzhi Dong, John S. Kimball, and Randal D. Koster

Abstract

Soil Moisture Active Passive (SMAP) mission L-band brightness temperature (Tb) observations are routinely assimilated into the Catchment land surface model to generate Level-4 soil moisture (L4_SM) estimates of global surface and root-zone soil moisture at 9-km, 3-hourly resolution with ~2.5-day latency. The Catchment model in the L4_SM algorithm is driven with 1/4°, hourly surface meteorological forcing data from the Goddard Earth Observing System (GEOS). Outside of Africa and the high latitudes, GEOS precipitation is corrected using Climate Prediction Center Unified (CPCU) gauge-based, 1/2°, daily precipitation. L4_SM soil moisture was previously shown to improve over land model-only estimates that use CPCU precipitation but no Tb assimilation (CPCU_SIM). Here, we additionally examine the skill of model-only (CTRL) and Tb assimilation-only (SMAP_DA) estimates derived without CPCU precipitation. Soil moisture is assessed versus in situ measurements in well-instrumented regions and globally through the instrumental variable (IV) method using independent soil moisture retrievals from the Advanced Scatterometer. At the in situ locations, SMAP_DA and CPCU_SIM have comparable soil moisture skill improvements relative to CTRL for the unbiased root-mean-square error (surface and root-zone) and correlation metrics (root-zone only). In the global average, SMAP Tb assimilation increases the surface soil moisture anomaly correlation by 0.10–0.11 compared to an increase of 0.02–0.03 from the CPCU-based precipitation corrections. The contrast is particularly strong in central Australia, where CPCU is known to have errors and observation-minus-forecast Tb residuals are larger when CPCU precipitation is used. Validation versus streamflow measurements in the contiguous United States reveals that CPCU precipitation provides most of the skill gained in L4_SM runoff estimates over CTRL.

Restricted access
Rolf H. Reichle, Gabrielle J. M. De Lannoy, Qing Liu, Randal D. Koster, John S. Kimball, Wade T. Crow, Joseph V. Ardizzone, Purnendu Chakraborty, Douglas W. Collins, Austin L. Conaty, Manuela Girotto, Lucas A. Jones, Jana Kolassa, Hans Lievens, Robert A. Lucchesi, and Edmond B. Smith

Abstract

The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and related land surface variables from 31 March 2015 to present with ~2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (OF) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of ~0.37 K for the OF Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the OF residuals (under ~3 K), the soil moisture increments (under ~0.01 m3 m−3), and the surface soil temperature increments (under ~1 K). Typical instantaneous values are ~6 K for OF residuals, ~0.01 (~0.003) m3 m−3 for surface (root zone) soil moisture increments, and ~0.6 K for surface soil temperature increments. The OF diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The OF autocorrelations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

Full access