Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: John Sears x
  • All content x
Clear All Modify Search
Christopher S. Velden and John Sears

Abstract

Vertical wind shear is well known in the tropical cyclone (TC) forecasting community as an important environmental influence on storm structure and intensity change. The traditional way to define deep-tropospheric vertical wind shear in most prior research studies, and in operational forecast applications, is to simply use the vector difference of the 200- and 850-hPa wind fields based on global model analyses. However, is this rather basic approach to approximate vertical wind shear adequate for most TC applications? In this study, the traditional approach is compared to a different methodology for generating fields of vertical wind shear as produced by the University of Wisconsin Cooperative Institute for Meteorological Satellite Studies (CIMSS). The CIMSS fields are derived with heavy analysis weight given to available high-density satellite-derived winds. The resultant isobaric analyses are then used to create two mass-weighted layer-mean wind fields, one upper and one lower tropospheric, which are then differenced to produce the deep-tropospheric vertical wind shear field. The principal novelty of this approach is that it does not rely simply on the analyzed winds at two discrete levels, but instead attempts to account for some of the variable vertical wind structure in the calculation. It will be shown how the resultant vertical wind shear fields derived by the two approaches can diverge significantly in certain situations; the results also suggest that in many cases it is superior in depicting the wind structure's impact on TCs than the simple two-level differential that serves as the common contemporary vertical wind shear approximation.

Full access
John Sears and Christopher S. Velden

Abstract

Fields of atmospheric motion vectors (AMVs) are routinely derived by tracking features in sequential geostationary satellite infrared, water vapor, and visible-channel imagery. While AMVs produced operationally by global data centers are routinely evaluated against rawinsondes, there is a relative dearth of validation opportunities over the tropical oceans—in particular, in the vicinity of tropical disturbances when anomalous flow fields and strongly sheared environments commonly exist. A field experiment in 2010 called Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) was conducted in the tropical west Atlantic Ocean and provides an opportunity to evaluate the quality of tropical AMVs and analyses derived from them. The importance of such a verification is threefold: 1) AMVs often provide the only input data for numerical weather prediction (NWP) over cloudy areas of the tropical oceans, 2) NWP data assimilation methods are increasingly reliant on accurate flow-dependent observation-error characteristics, and 3) global tropical analysis and forecast centers often rely on analyses and diagnostic products derived from the AMV fields. In this paper, the authors utilize dropsonde information from high-flying PREDICT aircraft to identify AMV characteristics and to better understand their errors in tropical-disturbance situations. It is found that, in general, the AMV observation errors are close to those identified in global validation studies. However, some distinct characteristics are uncovered in certain regimes associated with tropical disturbances. High-resolution analyses derived from the AMV fields are also examined and are found to be more reflective of anomalous flow fields than the respective Global Forecast System global model analyses.

Full access
Addison L. Sears-Collins, David M. Schultz, and Robert H. Johns
Full access
Addison L. Sears-Collins, David M. Schultz, and Robert H. Johns

Abstract

A climatology of nonfreezing drizzle is created using surface observations from 584 stations across the United States and Canada over the 15-yr period 1976–90. Drizzle falls 50–200 h a year in most locations in the eastern United States and Canada, whereas drizzle falls less than 50 h a year in the west, except for coastal Alaska and several western basins. The eastern and western halves of North America are separated by a strong gradient in drizzle frequency along roughly 100°W, as large as about an hour a year over 2 km. Forty percent of the stations have a drizzle maximum from November to January, whereas only 13% of stations have a drizzle maximum from June to August. Drizzle occurrence exhibits a seasonal migration from eastern Canada and the central portion of the Northwest Territories in summer, equatorward to most of the eastern United States and southeast Canada in early winter, to southeastern Texas and the eastern United States in late winter, and back north to eastern Canada in the spring. The diurnal hourly frequency of drizzle across the United States and Canada increases sharply from 0900 to 1200 UTC, followed by a steady decline from 1300 to 2300 UTC. Diurnal drizzle frequency is at a maximum in the early morning, in agreement with other studies.

Drizzle occurs during a wide range of atmospheric conditions at the surface. Drizzle has occurred at sea level pressures below 960 hPa and above 1040 hPa. Most drizzle, however, occurs at higher than normal sea level pressure, with more than 64% occurring at a sea level pressure of 1015 hPa or higher. A third of all drizzle falls when the winds are from the northeast quadrant (360°–89°), suggesting that continental drizzle events tend to be found poleward of surface warm fronts and equatorward of cold-sector surface anticyclones. Two-thirds of all drizzle occurs with wind speeds of 2.0–6.9 m s−1, with 7.6% in calm wind and 5% at wind speeds ⩾ 10 m s−1. Most drizzle (61%) occurs with visibilities between 1.5 and 5.0 km, with only about 20% occurring at visibilities less than 1.5 km.

Full access
Clark Evans, Heather M. Archambault, Jason M. Cordeira, Cody Fritz, Thomas J. Galarneau Jr., Saska Gjorgjievska, Kyle S. Griffin, Alexandria Johnson, William A. Komaromi, Sarah Monette, Paytsar Muradyan, Brian Murphy, Michael Riemer, John Sears, Daniel Stern, Brian Tang, and Segayle Thompson

The Pre-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field experiment successfully gathered data from four developing and four decaying/nondeveloping tropical disturbances over the tropical North Atlantic basin between 15 August and 30 September 2010. The invaluable roles played by early career scientists (ECSs) throughout the campaign helped make possible the successful execution of the field program's mission to investigate tropical cyclone formation. ECSs provided critical meteorological information— often obtained from novel ECS-created products—during daily weather briefings that were used by the principal investigators in making mission planning decisions. Once a Gulfstream V (G-V) flight mission was underway, ECSs provided nowcasting support, relaying information that helped the mission scientists to steer clear of potential areas of turbulence aloft. Data from these missions, including dropsonde and GPS water vapor profiler data, were continually obtained, processed, and quality-controlled by ECSs. The dropsonde data provided National Hurricane Center forecasters and PREDICT mission scientists with real-time information regarding the characteristics of tropical disturbances. These data and others will serve as the basis for multiple ECS-led research topics over the years to come and are expected to provide new insights into the tropical cyclone formation process. PREDICT also provided invaluable educational and professional development experiences for ECSs, including the opportunity to critically evaluate observational evidence for tropical cyclone development theories and networking opportunities with their peers and established scientists in the field.

Full access