Search Results

You are looking at 1 - 10 of 30 items for

  • Author or Editor: John W. Nielsen-Gammon x
  • Refine by Access: All Content x
Clear All Modify Search
John W. Nielsen-Gammon

A 20-yr loop of the global tropopause, defined in terms of potential vorticity (PV), is constructed using the NCEP–NCAR reanalysis dataset. This method of visualizing observed upper-tropospheric dynamics is useful for studying a wide range of phenomena. Examples are given of the structure of jet streams and planetary-scale tropopause folds, the propagation of a high-amplitude Rossby wave packet partway around a hemisphere, several subtropical wave breaking events, the similarities between exceptional cases of rapid cyclogenesis, favorable regions for cross-equatorial propagation of Rossby waves, the annual cycle of the tropical tropopause, the structure of the Tibetan anticyclone and equatorial easterly jet associated with the Asian monsoon, the meridional structure of the upper branch of the Hadley cell, the interaction of a hurricane and midlatitude trough to form the “Perfect Storm,” and the upper-tropospheric PV changes associated with El Niño and La Niña.

Plumes of anticyclonic potential vorticity are frequently seen to be pulled from the subtropical reservoir and roll up into large anticyclones. These previously undescribed plumes may be particularly relevant to jet streak dynamics and stratosphere-troposphere exchange.

Full access
John W. Nielsen-Gammon and David M. Schultz

Abstract

Full access
Boksoon Myoung and John W. Nielsen-Gammon

Abstract

This research is designed to investigate how convective instability influences monthly mean precipitation in Texas in the summertime and to examine the modulation of convective instability and precipitation by local and regional forcings. Since drought results from the accumulated effects of deficient precipitation over time, this study is expected to shed light on the physical and dynamical mechanisms of the initiation and maintenance of serious droughts as well. The focus in Part I of this two-part study is on identification of the controlling convective parameters and, in turn, the surface-based processes that cause variations in these parameters. NCEP–NCAR reanalysis data and observed precipitation data, correlation analysis, multiple linear regression analysis, and back-trajectory analysis are used to reveal the underlying dynamics of their linkage and causality.

Monthly mean precipitation is modified mainly by convective inhibition (CIN) rather than by convective available potential energy (CAPE) or by precipitable water. Excessive CIN is caused by surface dryness and warming at 700 hPa, leading to precipitation deficits on a monthly time scale. While the dewpoint temperature and thermodynamics at the surface are greatly affected by the soil moisture, the temperature at 700 hPa was found to be statistically independent of the surface dewpoint temperature since the 700-hPa temperature represents free-atmospheric processes. (These free-atmospheric processes are the focus of the companion paper.) Finally, the strong correlations among precipitation, soil moisture, and CIN, as well as their underlying physical processes, suggest that the tight linkage between precipitation and soil moisture is not only due to the impacts of precipitation on soil moisture but also to the feedbacks of soil moisture on precipitation by controlling CIN.

Full access
Michael C. Morgan and John W. Nielsen-Gammon

Abstract

The use of potential vorticity (PV) allows the efficient description of the dynamics of nearly balanced atmospheric flow phenomena, but the distribution of PV must be simply represented for ease in interpretation. Representations of PV on isentropic or isobaric surfaces can be cumbersome, as analyses of several surfaces spanning the troposphere must be constructed to fully apprehend the complete PV distribution.

Following a brief review of the relationship between PV and nearly balanced flows, it is demonstrated that the tropospheric PV has a simple distribution, and as a consequence, an analysis of potential temperature along the dynamic tropopause (here defined as a surface of constant PV) allows for a simple representation of the upper-tropospheric and lower-stratospheric PV. The construction and interpretation of these tropopause maps, which may be termed “isertelic” analyses of potential temperature, are described. In addition, techniques to construct dynamical representations of the lower-tropospheric PV and near-surface potential temperature, which complement these isertelic analyses, are also suggested. Case studies are presented to illustrate the utility of these techniques in diagnosing phenomena such as cyclogenesis, tropopause folds, the formation of an upper trough, and the effects of latent heat release on the upper and lower troposphere.

Full access
David A. Gold and John W. Nielsen-Gammon

Abstract

Observational and modeling studies have shown that shear and instability are powerful predictors of the likelihood of severe weather and tornadoes. To the extent that upper-tropospheric forecast errors can be described as potential vorticity (PV) anomalies on the forecasted PV field, knowing (and being able to quantify) the effects of such errors on shear and instability would allow forecasters to anticipate the effects of those errors on the likely mode of severe weather. To test the sensitivity of the severe convective environment to PV fluctuations, a PV inversion framework is adopted that utilizes nonlinear balance. The observed PV field is modified in a way that mimics realistic perturbations of trough intensity, location, or shape. Soundings, including moisture profiles, are reconstructed from the balanced geopotential height field assuming that air parcels conserve mixing ratio while their isentropic surfaces are displaced upward or downward by the addition of anomalous PV. Unperturbed balanced soundings agree reasonably well with full, unbalanced soundings, and differences are attributable to departures from nonlinear balance in areas of strong vorticity or acceleration. Balanced vertical wind profiles do not include the effects of friction, so the vertical shear of the balanced wind departs unacceptably from total shear within the lowest 1 km of the troposphere. The balanced wind perturbations are added to the total analyzed shear profile to estimate the effect of PV perturbations on shear and storm-relative helicity. By this process, the importance of typical or hypothesized upper-tropospheric forecast errors may be addressed in an idealized, case-study, or operational context.

Full access
D. Brent McRoberts and John W. Nielsen-Gammon

Abstract

Gridded radar-based quantitative precipitation estimates (QPEs) are potentially ideal inputs for hydrological modeling and monitoring because of their high spatiotemporal resolution. Beam blockage is a common type of bias in radar QPEs related to the blockage of the radar beam by an obstruction, such as topography or tall buildings. This leads to a diminishment in the power of the transmitted beam beyond the range of obstruction and a systematic underestimation of reflectivity return to the radar site. A new spatial analysis technique for objectively identifying regions in which precipitation estimates are contaminated by beam blockage was developed. The methodology requires only a long-term precipitation climatology with no prerequisite knowledge of topography or known obstructions needed. For each radar domain, the QPEs are normalized by climatology and a low-pass Fourier series fit captures the expected precipitation as a function of azimuth angle. Beam blockage signatures are identified as radially coherent regions with normalized values that are systematically lower than the Fourier fit. Precipitation estimates sufficiently affected by beam blockage can be replaced by values estimated using neighboring unblocked estimates. The methodology is applied to the correction of the National Weather Service radar-based QPE dataset, whose estimates originate from the NEXRAD network in the central and eastern United States. The methodology is flexible enough to be useful for most radar installations and geographical regions with at least a few years of data.

Full access
Richard C. Igau and John W. Nielsen-Gammon

Abstract

The evolution of the southerly low-level jet (LLJ) during a return flow event is studied using output from the Penn State/NCAR Mesoscale Model (Version 4). Three geographically different southerly LLJs develop in the simulation: one over the southern Plains of the United States, a second southwest of Brownsville, Texas, and a third over the western Gulf of Mexico. The LLJ over the Plains is found to form first as an inertial oscillation and later as a response to lee troughing and an elevated mixed layer that develops over the region. Over Mexico, the temperature structure over the Altiplanicie Mexicana (Mexican High Plain) is responsible for a locally intense low-level pressure gradient east of the High Plain which remains nearly stationary over two diurnal cycles. The LLJ over the western Gulf of Mexico results largely from topographic blocking of the low-level southerly flow by the eastern end of the Neovolcanic Cordillera northwest of Veracruz, Mexico.

The evolution of the lower troposphere over the southern Plains resembles the Carlson and Ludlam conceptual model for a severe storm environment, but the structure of the return flow is complex. When midlevel westerlies are weak, mesoscale and boundary layer processes govern the development of LLJs. As the west and southwesterly winds increase with an approaching upper-level disturbance, synoptic influences overwhelm the mesoscale processes leading to a single, larger-scale LLJ.

Full access
D. Brent McRoberts and John W. Nielsen-Gammon

Abstract

A new homogeneous climate division monthly precipitation dataset [based on full network estimated precipitation (FNEP)] was created as an alternative to the National Climatic Data Center (NCDC) climate division dataset. These alternative climate division monthly precipitation values were estimated using an equal-weighted average of Cooperative Observer Program stations that contained serially complete time series. Missing station observations were estimated by a procedure that was optimized through testing on U.S. Historical Climate Network stations. Inhomogeneities in the NCDC dataset arise from two principal causes. The pre-1931 estimation of NCDC climate division monthly precipitation from statewide averages led to a significant time series discontinuity in several climate divisions. From 1931 to the present, NCDC climate division averages have been calculated from a subset of available station data within each climate division, and temporal changes in the location of available stations have caused artificial changes in the time series. The FNEP climate division dataset is recommended over the NCDC dataset for studies involving climate trends or long-term climate variability. According to the FNEP data, the 1895–2009 linear precipitation trend is positive across most of the United States, and trends exceed 10% per century across the southern plains and the Corn Belt. Remaining inhomogeneities from changes in gauge technology and station location may be responsible for an artificial trend of 1%–3% per century.

Full access
John W. Nielsen-Gammon and David A. Gold

Abstract

Advances in computer power, new forecasting challenges, and new diagnostic techniques have brought about changes in the way atmospheric development and vertical motion are diagnosed in an operational setting. Many of these changes, such as improved model skill, model resolution, and ensemble forecasting, have arguably been detrimental to the ability of forecasters to understand and respond to the evolving atmosphere. The use of nondivergent wind in place of geostrophic wind would be a step in the right direction, but the advantages of potential vorticity suggest that its widespread adoption as a diagnostic tool on the west side of the Atlantic is overdue. Ertel potential vorticity (PV), when scaled to be compatible with pseudopotential vorticity, is generally similar to pseudopotential vorticity, so forecasters accustomed to quasigeostrophic reasoning through the height tendency equation can transfer some of their intuition into the Ertel-PV framework. Indeed, many of the differences between pseudopotential vorticity and Ertel potential vorticity are consequences of the choice of definition of quasigeostrophic PV and are not fundamental to the quasigeostrophic system. Thus, at its core, PV thinking is consistent with commonly used quasigeostrophic diagnostic techniques.

Full access
John W. Nielsen-Gammon and Daniel Keyser

Abstract

Effective stratification can be interpreted as the resistance to upward motion of saturated air parcels experiencing condensation. Previously published expressions for effective stratification conflict with each other, and the most widely distributed expression contains an O(1) error. A derivation of effective stratification is presented that exposes its physical interpretation and that reveals the origin of the flaw in the incorrect derivation.

Full access