Search Results

You are looking at 1 - 10 of 38 items for

  • Author or Editor: Jon Eischeid x
  • Refine by Access: All Content x
Clear All Modify Search
Martin Hoerling
,
Jon Eischeid
, and
Judith Perlwitz

Abstract

In this study, the nature and causes for observed regional precipitation trends during 1977–2006 are diagnosed. It is found that major features of regional trends in annual precipitation during 1977–2006 are consistent with an atmospheric response to observed sea surface temperature (SST) variability. This includes drying over the eastern Pacific Ocean that extends into western portions of the Americas related to a cooling of eastern Pacific SSTs, and broad increases in rainfall over the tropical Eastern Hemisphere, including a Sahelian rainfall recovery and increased wetness over the Indo–West Pacific related to North Atlantic and Indo–West Pacific ocean warming. It is further determined that these relationships between SST and rainfall change are generally not symptomatic of human-induced emissions of greenhouse gases (GHGs) and aerosols. The intensity of regional trends simulated in climate models using observed time variability in greenhouse gases, tropospheric sulfate aerosol, and solar and volcanic aerosol forcing are appreciably weaker than those observed and also weaker than those simulated in atmospheric models using only observed SST forcing. The pattern of rainfall trends occurring in response to such external radiative forcing also departs significantly from observations, especially a simulated increase in rainfall over the tropical Pacific and southeastern Australia that are opposite in sign to the actual drying in these areas.

Additional experiments illustrate that the discrepancy between observed and GHG-forced rainfall changes during 1977–2006 results mostly from the differences between observed and externally forced SST trends. Only weak rainfall sensitivity is found to occur in response to the uniform distribution of SST warming that is induced by GHG and aerosol forcing, whereas the particular pattern of the observed SST change that includes an increased SST contrast between the east Pacific and the Indian Ocean, and strong regional warming of the North Atlantic Ocean, was a key driver of regional rainfall trends. The results of this attribution study on the causes for 1977–2006 regional rainfall changes are used to discuss prediction challenges including the likelihood that recent rainfall trends might persist.

Full access
Shaleen Jain
,
Martin Hoerling
, and
Jon Eischeid

Abstract

Assessing climate-related societal vulnerability and mitigating impacts requires timely diagnosis of the nature of regional hydrologic change. A late-twentieth-century emergent trend is discovered toward increasing year-to-year variance (decreasing reliability) of streamflow across the major river basins in western North America—–Fraser, Columbia, Sacramento–San Joaquin, and Upper Colorado. Simultaneously, a disproportionate increase in the incidence of synchronous flows (simultaneous high or low flows across all four river basins) has resulted in expansive water resources stress. The observed trends have analogs in wintertime atmospheric circulation regimes and ocean temperatures, raising new questions on the detection, attribution, and projection of regional hydrologic change induced by climate.

Full access
Galina Guentchev
,
Joseph J. Barsugli
, and
Jon Eischeid

Abstract

Inhomogeneity in gridded meteorological data may arise from the inclusion of inhomogeneous station data or from aspects of the gridding procedure itself. However, the homogeneity of gridded datasets is rarely questioned, even though an analysis of trends or variability that uses inhomogeneous data could be misleading or even erroneous. Three gridded precipitation datasets that have been used in studies of the Upper Colorado River basin were tested for homogeneity in this study: that of Maurer et al., that of Beyene and Lettenmaier, and the Parameter–Elevation Regressions on Independent Slopes Model (PRISM) dataset of Daly et al. Four absolute homogeneity tests were applied to annual precipitation amounts on a grid cell and on a hydrologic subregion spatial scale for the periods 1950–99 and 1916–2006. The analysis detects breakpoints in 1977 and 1978 at many locations in all three datasets that may be due to an anomalously rapid shift in the Pacific decadal oscillation. One dataset showed breakpoints in the 1940s that might be due to the widespread change in the number of available observing stations used as input for that dataset. The results also indicated that the time series from the three datasets are sufficiently homogeneous for variability analysis during the 1950–99 period when aggregated on a subregional scale.

Full access
Linyin Cheng
,
Martin Hoerling
,
Lesley Smith
, and
Jon Eischeid

Abstract

Factors responsible for extreme monthly rainfall over Texas and Oklahoma during May 2015 are assessed. The event had a return period of at least 400 years, in contrast to the prior record, which was roughly a 100-yr event. The event challenges attribution science to disentangle factors because it occurred during a strong El Niño, a natural pattern of variability that affects the region’s springtime rains, and during the warmest global mean temperatures since 1880. Effects of each factor are diagnosed, as is the interplay between El Niño dynamics and human-induced climate change.

Analysis of historical climate simulations reveals that El Niño was a necessary condition for monthly rains to occur having the severity of May 2015. The model results herein further reveal that a 2015 magnitude event, whether conditioned on El Niño or not, was made neither more intense nor more likely to be due to human-induced climate change over the past century.

The intensity of extreme May rainfall over Texas and Oklahoma , analogous to the 2015 event, increases by roughly 5% by the latter half of the twenty-first century. No material changes occur in either El Niño–related teleconnections or in overall atmospheric dynamics during extreme May rainfall over the twenty-first century. The increased severity of Texas/Oklahoma May rainfall events in the future is principally due to thermodynamic driving, although much less than implied by simple Clausius–Clapeyron scaling arguments given a projected 23% increase in atmospheric precipitable water vapor. Other thermodynamic factors are identified that act in opposition to the increase in atmospheric water vapor, thereby reducing the effectiveness of overall thermodynamic driving of extreme May rainfall changes over Texas and Oklahoma.

Full access
Martin Hoerling
,
James Hurrell
,
Jon Eischeid
, and
Adam Phillips

Abstract

The spatial patterns, time history, and seasonality of African rainfall trends since 1950 are found to be deducible from the atmosphere’s response to the known variations of global sea surface temperatures (SSTs). The robustness of the oceanic impact is confirmed through the diagnosis of 80 separate 50-yr climate simulations across a suite of atmospheric general circulation models. Drying over the Sahel during boreal summer is shown to be a response to warming of the South Atlantic relative to North Atlantic SST, with the ensuing anomalous interhemispheric SST contrast favoring a more southern position of the Atlantic intertropical convergence zone. Southern African drying during austral summer is shown to be a response to Indian Ocean warming, with enhanced atmospheric convection over those warm waters driving subsidence drying over Africa.

The ensemble of greenhouse-gas-forced experiments, conducted as part of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, fails to simulate the pattern or amplitude of the twentieth-century African drying, indicating that the drought conditions were likely of natural origin. For the period 2000–49, the ensemble mean of the forced experiments yields a wet signal over the Sahel and a dry signal over southern Africa. These rainfall changes are physically consistent with a projected warming of the North Atlantic Ocean compared with the South Atlantic Ocean, and a further warming of the Indian Ocean. However, considerable spread exists among the individual members of the multimodel ensemble.

Full access
Linyin Cheng
,
Martin Hoerling
,
Zhiyong Liu
, and
Jon Eischeid

Abstract

Although the link between droughts and heat waves is widely recognized, how climate change affects this link remains uncertain. Here we assess how, and by how much, human-induced climate change affects summertime hot drought compound events over the contiguous United States. Results are derived by comparing hot drought statistics in long simulations of a coupled climate model (CESM1) subjected to year-1850 and year-2000 radiative forcings. Within each climate state, a strong and nonlinear dependency of heat-wave intensity on drought severity is found in water-limited regions of the southern Great Plains and southwestern United States whereas heat-wave intensity is found to be insensitive to drought severity in energy-limited regions of the northern and/or northeastern United States. Applying a statistical model that is based on pair-copula constructions, we find that anthropogenic warming leads to enhanced soil moisture–temperature coupling in water-limited areas of the southern Great Plains and/or southwestern United States and consequently amplifies the intensity of extreme heat waves during severe droughts. This strengthened coupling accounts for a substantial fraction of rising temperature extremes related to the long-term climate change in CESM1, highlighting the importance of changes in land–atmosphere feedback in a warmer climate. In contrast, coupling effects remain weak and largely unchanged in energy-limited regions, thereby yielding no appreciable contribution to heat-wave intensification over the northern and/or northeastern United States apart from the long-term warming effects.

Full access
Klaus Wolter
,
Jon K. Eischeid
,
Linyin Cheng
, and
Martin Hoerling
Full access
Klaus Wolter
,
Martin Hoerling
,
Jon K. Eischeid
, and
Dave Allured
Full access
Andrew Hoell
,
Martin Hoerling
,
Jon Eischeid
,
Xiao-Wei Quan
, and
Brant Liebmann

Abstract

Two theories for observed East Africa drying trends during March–May 1979–2013 are reconciled. Both hypothesize that variations in tropical sea surface temperatures (SSTs) caused East Africa drying. The first invokes a mainly human cause resulting from sensitivity to secular warming of Indo–western Pacific SSTs. The second invokes a mainly natural cause resulting from sensitivity to a strong articulation of ENSO-like Pacific decadal variability involving warming of the western Pacific and cooling of the central Pacific. Historical atmospheric model simulations indicate that observed SST variations contributed significantly to the East Africa drying trend during March–May 1979–2013. By contrast, historical coupled model simulations suggest that external radiative forcing alone, including the ocean’s response to that forcing, did not contribute significantly to East Africa drying. Recognizing that the observed SST variations involved a commingling of natural and anthropogenic effects, this study diagnosed how East African rainfall sensitivity was conditionally dependent on the interplay of those factors. East African rainfall trends in historical coupled models were intercompared between two composites of ENSO-like decadal variability, one operating in the early twentieth century before appreciable global warming and the other in the early twenty-first century of strong global warming. The authors find the coaction of global warming with ENSO-like decadal variability can significantly enhance 35-yr East Africa drying trends relative to when the natural mode of ocean variability acts alone. A human-induced change via its interplay with an extreme articulation of natural variability may thus have been key to Africa drying; however, these results are speculative owing to differences among two independent suites of coupled model ensembles.

Full access
Porathur V. Joseph
,
Jon K. Eischeid
, and
Robert J. Pyle

Abstract

The long-term mean date of the monsoon onset over Kerala (MOK) varies between 30 May and 2 June according to different estimates, with a standard deviation of 8–9 days. The earliest date of MOK, and the most delayed one, during the last 100 years differ by 46 days (7 May and 22 June, respectively). MOK switches on a spatially large and intense convective heat source over south Asia, lasting from June to September, whose moisture supply is made available through the cross-equatorial low-level jet stream.

Superposed epoch analysis of 10 years of outgoing longwave radiation (OLR) data shows that MOK is a significant stage in the evolution of the OLR field in the tropics of the eastern hemisphere. At the time of MOK there is increased convection in a band about 5–10 degrees wide meridionally, extending from the south Arabian Sea to south China, and convection is suppressed all around, particularly in the western Pacific Ocean. In 1983 when MOK was delayed by about 3 pentads, OLR data showed that the boreal spring-to-summer migration of the equatorial convective cloudiness maximum (ECCM), both westward and northward, was also delayed. The delayed MOK is accompanied by delays in the northwestward movement of ECCM and is confirmed by an analysis of long-term data of southwest Pacific tropical cyclones.

Of the 22 years between 1870–1989 when MOK was delayed by 8 days or more, 16 casts were associated with a moderate or strong El Niño. Of the 13 strong El Niños during the same period, 9 were associated with moderate-to-large delays in MOK. Delays preferentially occurred in the year +1 of an El Niño, where year 0 is the growing phase of the El Niño in sea surface temperature (SST).

Analysis of the SST field has shown that delayed MOK is associated with warm SST anomalies at and south of the equator in the Indian and Pacific oceans and cold SST anomalies in the tropical and subtropical oceans to the north during the season prior to the monsoon onset (i.e., March to May). It is hypothesized that such SST anomalies over the Indian and Pacific oceans (generally found associated with El Niño, either in year 0 or year +1 or in both) cause the interannual variability of the MOK through their action in affecting the timing of the northwestward movement of the ECCM.

Full access