Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jon Holmgren x
  • Refine by Access: All Content x
Clear All Modify Search
Matthew Sturm, Jon Holmgren, and Glen E. Liston

Abstract

A new classification system for seasonal snow covers is proposed. It has six classes (tundra, taiga, alpine, maritime, prairie, and ephemeral, each class defined by a unique ensemble of textural and stratigraphic characteristics including the sequence of snow layers, their thickness, density, and the crystal morphology and grain characteristics within each layer. The classes can also be derived using a binary system of three climate variables: wind, precipitation, and air temperature. Using this classification system, the Northern Hemisphere distribution of the snow cover classes is mapped on a 0.5° lat × 0.5° long grid. These maps are compared to maps prepared from snow cover data collected in the former Soviet Union and Alaska. For these areas where both climatologically based and texturally based snow cover maps are available, there is 62% and 90% agreement, respectively. Five of the six snow classes are found in Alaska. From 1989 through 1992, hourly measurements, consisting of 40 thermal and physical parameters, including snow depth, the temperature distribution in the snow, and basal heat flow, were made on four of these classes. In addition, snow stratigraphy and texture were measured every six weeks. Factor analysis indicates that the snow classes can be readily discriminated using four or more winter average thermal or physical parameters. Further, analysis of hourly time series indicates that 84% of the time, spot measurements of the parameters are sufficient to correctly differentiate the snow cover class. Using the new snow classification system, 1) classes can readily be distinguished using observations of simple thermal parameters, 2) physical and thermal attributes of the snow can be inferred, and 3) classes can be mapped from climate data for use in regional and global climate modeling.

Full access
Chris Derksen, Arvids Silis, Matthew Sturm, Jon Holmgren, Glen E. Liston, Henry Huntington, and Daniel Solie

Abstract

During April 2007, a coordinated series of snow measurements was made across the Northwest Territories and Nunavut, Canada, during a snowmobile traverse from Fairbanks, Alaska, to Baker Lake, Nunavut. The purpose of the measurements was to document the general nature of the snowpack across this region for the evaluation of satellite- and model-derived estimates of snow water equivalent (SWE). Although detailed, local snow measurements have been made as part of ongoing studies at tundra field sites (e.g., Daring Lake and Trail Valley Creek in the Northwest Territories; Toolik Lake and the Kuparak River basin in Alaska), systematic measurements at the regional scale have not been previously collected across this region of northern Canada. The snow cover consisted of depth hoar and wind slab with small and ephemeral fractions of new, recent, and icy snow. The snow was shallow (<40 cm deep), usually with fewer than six layers. Where snow was deposited on lake and river ice, it was shallower, denser, and more metamorphosed than where it was deposited on tundra. Although highly variable locally, no longitudinal gradients in snow distribution, magnitude, or structure were detected. This regional homogeneity allowed us to identify that the observed spatial variability in passive microwave brightness temperatures was related to subgrid fractional lake cover. Correlation analysis between lake fraction and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature showed frequency dependent, seasonally evolving relationships consistent with lake ice drivers. Simulations of lake ice thickness and snow depth on lake ice produced from the Canadian Lake Ice Model (CLIMo) indicated that at low frequencies (6.9, 10.7 GHz), correlations with lake fraction were consistent through the winter season, whereas at higher frequencies (18.7, 36.5 GHz), the strength and direction of the correlations evolved consistently with the penetration depth as the influence of the subice water was replaced by emissions from the ice and snowpack. A regional rain-on-snow event created a surface ice lens that was detectable using the AMSR-E 36.5-GHz polarization gradient due to a strong response at the horizontal polarization. The appropriate polarization for remote sensing of the tundra snowpack depends on the application: horizontal measurements are suitable for ice lens detection; vertically polarized measurements are appropriate for deriving SWE estimates.

Full access
Matthew Sturm, Jon Holmgren, Joseph P. McFadden, Glen E. Liston, F. Stuart Chapin III, and Charles H. Racine

Abstract

In the Arctic, where wind transport of snow is common, the depth and insulative properties of the snow cover can be determined as much by the wind as by spatial variations in precipitation. Where shrubs are more abundant and larger, greater amounts of drifting snow are trapped and suffer less loss due to sublimation. The snow in shrub patches is both thicker and a better thermal insulator per unit thickness than the snow outside of shrub patches. As a consequence, winter soil surface temperatures are substantially higher, a condition that can promote greater winter decomposition and nutrient release, thereby providing a positive feedback that could enhance shrub growth. If the abundance, size, and coverage of arctic shrubs increases in response to climate warming, as is expected, snow–shrub interactions could cause a widespread increase (estimated 10%–25%) in the winter snow depth. This would increase spring runoff, winter soil temperatures, and probably winter CO2 emissions. The balance between these winter effects and changes in the summer energy balance associated with the increase in shrubs probably depends on shrub density, with the threshold for winter snow trapping occurring at lower densities than the threshold for summer effects such as shading. It is suggested that snow–shrub interactions warrant further investigation as a possible factor contributing to the transition of the arctic land surface from moist graminoid tundra to shrub tundra in response to climatic warming.

Full access