Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jonah Bloch-Johnson x
  • All content x
Clear All Modify Search
Jonah Bloch-Johnson, Maria Rugenstein, and Dorian S. Abbot


The sensitivity of the climate to CO2 forcing depends on spatially varying radiative feedbacks that act both locally and nonlocally. We assess whether a method employing multiple regression can be used to estimate local and nonlocal radiative feedbacks from internal variability. We test this method on millennial-length simulations performed with six coupled atmosphere–ocean general circulation models (AOGCMs). Given the spatial pattern of warming, the method does quite well at recreating the top-of-atmosphere flux response for most regions of Earth, except over the Southern Ocean where it consistently overestimates the change, leading to an overestimate of the sensitivity. For five of the six models, the method finds that local feedbacks are positive due to cloud processes, balanced by negative nonlocal shortwave cloud feedbacks associated with regions of tropical convection. For four of these models, the magnitudes of both are comparable to the Planck feedback, so that changes in the ratio between them could lead to large changes in climate sensitivity. The positive local feedback explains why observational studies that estimate spatial feedbacks using only local regressions predict an unstable climate. The method implies that sensitivity in these AOGCMs increases over time due to a reduction in the share of warming occurring in tropical convecting regions and the resulting weakening of associated shortwave cloud and longwave clear-sky feedbacks. Our results provide a step toward an observational estimate of time-varying climate sensitivity by demonstrating that many aspects of spatial feedbacks appear to be the same between internal variability and the forced response.

Restricted access
Kevin Schwarzwald, Andrew Poppick, Maria Rugenstein, Jonah Bloch-Johnson, Jiali Wang, David McInerney, and Elisabeth J. Moyer


Changes in precipitation variability can have large societal consequences, whether at the short timescales of flash floods or the longer timescales of multi-year droughts. Recent studies have suggested that in future climate projections, precipitation variability rises more steeply than does its mean, leading to concerns about societal impacts. This work evaluates changes in mean precipitation over a broad range of spatial and temporal scales using a range of models from high-resolution regional simulations to millennial-scale global simulations. Results show that changes depend on the scale of aggregation and involve strong regional differences. On local scales that resolve individual rainfall events (hours and tens of kilometers), changes in precipitation distributions are complex and variances rise substantially more than means, as is required given the well-known disproportionate rise in precipitation intensity. On scales that aggregate across many events, distributional changes become simpler and variability changes smaller. At regional scale, future precipitation distributions can be largely reproduced by a simple transformation of present-day precipitation involving a multiplicative shift and a small additive term. The “extra” broadening is negatively correlated with changes in mean precipitation: in strongly “wetting” areas, distributions broaden less than expected from a simple multiplicative mean change; in “drying” areas, distributions narrow less. Precipitation variability changes are therefore of especial concern in the subtropics, which tend to dry under climate change. Outside the tropics, variability changes are similar on timescales from days to decades, i.e. show little frequency dependence. This behavior is highly robust across models, suggesting it may stem from some fundamental constraint.

Restricted access
Maria Rugenstein, Jonah Bloch-Johnson, Ayako Abe-Ouchi, Timothy Andrews, Urs Beyerle, Long Cao, Tarun Chadha, Gokhan Danabasoglu, Jean-Louis Dufresne, Lei Duan, Marie-Alice Foujols, Thomas Frölicher, Olivier Geoffroy, Jonathan Gregory, Reto Knutti, Chao Li, Alice Marzocchi, Thorsten Mauritsen, Matthew Menary, Elisabeth Moyer, Larissa Nazarenko, David Paynter, David Saint-Martin, Gavin A. Schmidt, Akitomo Yamamoto, and Shuting Yang


We present a model intercomparison project, LongRunMIP, the first collection of millennial-length (1,000+ years) simulations of complex coupled climate models with a representation of ocean, atmosphere, sea ice, and land surface, and their interactions. Standard model simulations are generally only a few hundred years long. However, modeling the long-term equilibration in response to radiative forcing perturbation is important for understanding many climate phenomena, such as the evolution of ocean circulation, time- and temperature-dependent feedbacks, and the differentiation of forced signal and internal variability. The aim of LongRunMIP is to facilitate research into these questions by serving as an archive for simulations that capture as much of this equilibration as possible. The only requirement to participate in LongRunMIP is to contribute a simulation with elevated, constant CO2 forcing that lasts at least 1,000 years. LongRunMIP is an MIP of opportunity in that the simulations were mostly performed prior to the conception of the archive without an agreed-upon set of experiments. For most models, the archive contains a preindustrial control simulation and simulations with an idealized (typically abrupt) CO2 forcing. We collect 2D surface and top-of-atmosphere fields and 3D ocean temperature and salinity fields. Here, we document the collection of simulations and discuss initial results, including the evolution of surface and deep ocean temperature and cloud radiative effects. As of October 2019, the collection includes 50 simulations of 15 models by 10 modeling centers. The data of LongRunMIP are publicly available. We encourage submissions of more simulations in the future.

Free access