Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Jorg Hacker x
  • Refine by Access: All Content x
Clear All Modify Search
Wolfgang Junkermann
and
Jorg M. Hacker

Abstract

Ultrafine particles (UFPs) are distributed highly unevenly in the lower troposphere. Although these UFPs are positively detectable and have been studied for more than a century, their three-dimensional distribution, formation, and budget in the atmosphere remain largely uncertain, despite their obvious climate relevance. This is due to their short lifetime and the fact that they are invisible to the human eye and to remote sensing techniques. From the moment of their emission or generation, their spatial distribution is a result of meteorological processes, regional-scale transport, local thermal convection, and rapid loss by interaction with clouds as cloud condensation nuclei. Here, we report about three-dimensional airborne in situ studies aimed at investigating UFP sources, distribution, and behavior on different spatial and temporal scales. We identified fossil fuel–burning power stations, refineries, and smelters as major anthropogenic UFP sources. On a regional scale, their emissions are significantly higher than urban emissions. Particle emissions from such power stations are released typically at altitudes between 200 and 300 m AGL. Detailed in situ measurements of particle concentration and related parameters, together with meteorological measurements and analyses, enable reliable source attribution even over several hundred kilometers downwind from the emitter. Comprehensive meteorological analysis is required to understand the highly variable 3D concentration patterns generated by advective transport and thermal convection. Knowledge of primary emission strength, together with size distributions and atmospheric 3D transport of UFPs derived from airborne measurements, makes it possible to estimate the aerosols’ impact on meteorology, hydrological cycles, and climate.

Open access
Donald E. Wroblewski
,
Owen R. Coté
,
Jorg M. Hacker
, and
Ronald J. Dobosy

Abstract

High-resolution measurements obtained from NOAA “best” atmospheric turbulence (BAT) probes mounted on an EGRETT high-altitude research aircraft were used to characterize turbulence in the upper troposphere and lower stratosphere at scales from 2 m to 20 km, focusing on three-dimensional behavior in the sub-kilometer-scale range. Data were analyzed for 129 separate level flight segments representing 41 h of flight time and 12 600 km of wind-relative flight distances. The majority of flights occurred near the tropopause layer of the winter subtropical jet stream in the Southern Hemisphere. Second-order structure functions for velocity and temperature were analyzed for the separate level-flight segments, individually and in various ensembles. A 3D scaling range was observed at scales less than about 100 m, with power-law exponents for the structure functions of the velocity component in the flight direction varying mostly between 0.4 and 0.75 for the separate flight segments, but close to ⅔ for the ensemble-averaged curves for all levels and for various subensembles. Structure functions in the 3D scaling range were decoupled from those at scales greater than 10 km, with the large-scale structure functions showing less variation than those at smaller scales. Weakly anisotropic behavior was observed in the 3D range, with structure parameters for the lateral and vertical velocities on the same order as those in the flight direction but deviating from the expected isotropic value. Anisotropy was correlated with turbulence intensity, with greater anisotropy associated with weaker turbulence.

Full access
Donald E. Wroblewski
,
Owen R. Coté
,
Jorg M. Hacker
, and
Ron J. Dobosy

Abstract

Cliff–ramp patterns (CR) are a common feature of scalar turbulence, characterized by a sharp temperature increase (cliff) followed by a more gradual temperature decrease (ramp). Aircraft measurements obtained from NOAA best aircraft turbulence probes (BAT) were used to characterize and compare CR patterns observed under stably stratified conditions in the upper troposphere, a region for which there are few such studies. Experimental data were analyzed for three locations, one over Wales and two over southern Australia, the latter in correspondence with the Southern Hemisphere winter subtropical jet stream. Comparison of observed CR patterns with published direct numerical simulations (DNS) revealed that they were likely signatures of Kelvin–Helmholtz (KH) billows, with the ramps associated with the well-mixed billows and the cliffs marking the highly stretched braids. Strong correlation between potential temperature and horizontal velocity supported the KH link, though expected correlations with vertical velocity were not observed. The temperature fronts associated with the cliffs were oriented in a direction approximately normal to the mean wind direction. Locally high values of temperature structure constant near these fronts were associated with steep temperature gradients across the fronts; this may be misleading in the context of electromagnetic propagation, suggesting a false positive indication of high levels of small-scale turbulence that would not correspond to scintillation effects. Billow aspect ratios, braid angles, and length scales were estimated from the data and comparisons with published DNS provided a means for assessing the stage of evolution of the KH billows and the initial Richardson number of the layer.

Full access
Stuart Matthews
,
Jörg M. Hacker
,
Jason Cole
,
Jeffrey Hare
,
Charles N. Long
, and
R. Michael Reynolds

Abstract

Nauru, a small island in the tropical Pacific, generates cloud plumes that may grow to over 100-km lengths. This study uses observations to examine the mesoscale disturbance of the marine atmospheric boundary layer by the island that produces these cloud plumes. Observations of the surface layer were made from two ships in the vicinity of Nauru and from instruments on the island. The structure of the atmospheric boundary layer over the island was investigated using aircraft flights. Cloud production over Nauru was examined using remote sensing instruments. The diurnal cycles of surface meteorology and radiation are characterized at a point near the west (downwind) coast of Nauru. The spatial variation of surface meteorology and radiation are also examined using surface and aircraft measurements. During the day, the island surface layer is warmer than the marine surface layer and wind speed is lower than over the ocean. Surface heating forces the growth of a thermal internal boundary layer, within which a plume of cumulus clouds forms. Cloud production begins early in the morning over the ocean near the island’s lee shore; as heating intensifies during the day, cloud production moves upwind over Nauru. These clouds form a plume that may extend over 100 km downwind of Nauru. Aircraft observations showed that a plume of warm, dry air develops over the island that extends 15–20 km downwind before dissipating. Limited observations suggest that the cloud plume may be sustained farther downwind of Nauru by a pair of convective rolls. Suggestions for further investigation of the cloud plume are made.

Full access
Robert Goler
,
Michael J. Reeder
,
Roger K. Smith
,
Harald Richter
,
Sarah Arnup
,
Tom Keenan
,
Peter May
, and
Jorg Hacker

Abstract

Observations of dry-season north Australian cloud lines (NACLs) that form in the Gulf of Carpentaria region of northern Australia and the sea-breeze circulations that initiate them are described. The observations were made during the 2002 Gulf Lines Experiment (GLEX) and include measurements made by an instrumented research aircraft. The observations are compared with numerical simulations made from a two-dimensional cloud-scale model. Particular emphasis is placed on the interaction between the east coast and west coast sea breezes near the west coast of Cape York Peninsula. The sea breezes are highly asymmetric due to the low-level easterly synoptic flow over the peninsula. The west coast sea breeze is well defined with a sharp leading edge since the opposing flow limits its inland penetration, keeping it close to its source of cold air. In contrast, the east coast sea breeze is poorly defined since it is aided by the easterly flow and becomes highly modified by daytime convective mixing as it crosses over the peninsula. Both the observations and the numerical model show that, in the early morning hours, the mature NACL forms at the leading edge of a gravity current. The numerical model simulations show that this gravity current arises as a westward-moving land breeze from Cape York Peninsula. Convergence at the leading edge of this land breeze is accompanied by ascent, which when strong enough produces cloud. Observations show that the decay of the NACL is associated with a decline in the low-level convergence and a weakening of the ascent.

Full access
Alastair G. Williams
,
Wlodek Zahorowski
,
Scott Chambers
,
Alan Griffiths
,
Jörg M. Hacker
,
Adrian Element
, and
Sylvester Werczynski

Abstract

Radon (222Rn) is a powerful natural tracer of mixing and exchange processes in the atmospheric boundary layer. The authors present and discuss the main features of a unique dataset of 50 high-resolution vertical radon profiles up to 3500 m above ground level, obtained in clear and cloudy daytime terrestrial boundary layers over an inland rural site in Australia using an instrumented motorized research glider. It is demonstrated that boundary layer radon profiles frequently exhibit a complex layered structure as a result of mixing and exchange processes of varying strengths and extents working in clear and cloudy conditions within the context of the diurnal cycle and the synoptic meteorology. Normalized aircraft radon measurements are presented, revealing the characteristic structure and variability of three major classes of daytime boundary layer: 1) dry convective boundary layers, 2) mixed layers topped with residual layers, and 3) convective boundary layers topped with coupled nonprecipitating clouds. Robust and unambiguous signatures of important atmospheric processes in the boundary layer are identifiable in the radon profiles, including “top-down” mixing associated with entrainment in clear-sky cases and strongly enhanced venting and subcloud-layer mixing when substantial active cumulus are present. In poorly mixed conditions, radon gradients in the daytime atmospheric surface layer significantly exceed those predicted by Monin–Obukhov similarity theory. In two case studies, it is demonstrated for the first time that a sequence of vertical radon profiles measured over the course of a single day can consistently reproduce major structural features of the evolving boundary layer.

Full access
Jason Beringer
,
Jorg Hacker
,
Lindsay B. Hutley
,
Ray Leuning
,
Stefan K. Arndt
,
Reza Amiri
,
Lutz Bannehr
,
Lucas A. Cernusak
,
Samantha Grover
,
Carol Hensley
,
Darren Hocking
,
Peter Isaac
,
Hizbullah Jamali
,
Kasturi Kanniah
,
Stephen Livesley
,
Bruno Neininger
,
Kyaw Tha Paw U
,
William Sea
,
Dennis Straten
,
Nigel Tapper
,
Richard Weinmann
,
Stephen Wood
, and
Steve Zegelin

Savannas are highly significant global ecosystems that consist of a mix of trees and grasses and that are highly spatially varied in their physical structure, species composition, and physiological function (i.e., leaf area and function, stem density, albedo, and roughness). Variability in ecosystem characteristics alters biophysical and biogeochemical processes that can affect regional to global circulation patterns, which are not well characterized by land surface models. We initiated a multidisciplinary field campaign called Savanna Patterns of Energy and Carbon Integrated across the Landscape (SPECIAL) during the dry season in Australian savannas to understand the spatial patterns and processes of land surface–atmosphere exchanges (radiation, heat, moisture, CO2, and other trace gasses). We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux transects, aircraft boundary layer budgets, and satellite remote sensing to quantify the spatial variability across a continental-scale rainfall gradient (transect). We found that the structure of vegetation changed along the transect in response to declining average rainfall. Tree basal area decreased from 9.6 m2 ha−1 in the coastal woodland savanna (annual rainfall 1,714 mm yr−1) to 0 m2 ha−1 at the grassland site (annual rainfall 535 mm yr−1), with dry-season green leaf area index (LAI) ranging from 1.04 to 0, respectively. Leaf-level measurements showed that photosynthetic properties were similar along the transect. Flux tower measurements showed that latent heat fluxes (LEs) decreased from north to south with resultant changes in the Bowen ratios (H/LE) from a minimum of 1.7 to a maximum of 15.8, respectively. Gross primary productivity, net carbon dioxide exchange, and LE showed similar declines along the transect and were well correlated with canopy LAI, and fluxes were more closely coupled to structure than floristic change.

Full access