Search Results
You are looking at 1 - 10 of 11 items for
- Author or Editor: José Ochoa x
- Refine by Access: All Content x
Abstract
Profiles from CTD surveys in the Northeastern Pacific are used to study temperature, salinity and density finestructures. Finestructures are defined here as those perturbations of the thermodynamic fields which are not due to internal wave advection and whose vertical extent is between 1 and 100 m. It is shown that two limiting types of finestructures can be distinctly identified: step-structures and intrusions. A step-structure could be the signature of a mixing event; the temperature versus salinity (T–S) relationship is almost linear and the vertical configuration shows a weakly gratified layer bounded above and below by highly stratified but relatively thin regions. An intrusion is the result of lateral interleaving when the displaced water is of different type than the intruding one and their densities are practically the same. The difference in water types could be so large that the intrusion is warmer and saltier, or colder and fresher than its neighbors above and below. In this limit, density increases smoothly with depth, and sudden changes of temperature and salinity occur simultaneously in a density compensating way. Therefore, the T–S relationship is nonlinear and shows cusps in the direction of isopycnals.
These two process in a perfect correlation between the temperature and salinity contributions to the buoyancy frequency squared. It is +1 when only step-structures show up, and −1 when only intrusions do. This note shows that in the area of the observations some vertical ranges are populated mainly by one or the other limiting type, implying a differential strength in the finestructure producing processes.
Abstract
Profiles from CTD surveys in the Northeastern Pacific are used to study temperature, salinity and density finestructures. Finestructures are defined here as those perturbations of the thermodynamic fields which are not due to internal wave advection and whose vertical extent is between 1 and 100 m. It is shown that two limiting types of finestructures can be distinctly identified: step-structures and intrusions. A step-structure could be the signature of a mixing event; the temperature versus salinity (T–S) relationship is almost linear and the vertical configuration shows a weakly gratified layer bounded above and below by highly stratified but relatively thin regions. An intrusion is the result of lateral interleaving when the displaced water is of different type than the intruding one and their densities are practically the same. The difference in water types could be so large that the intrusion is warmer and saltier, or colder and fresher than its neighbors above and below. In this limit, density increases smoothly with depth, and sudden changes of temperature and salinity occur simultaneously in a density compensating way. Therefore, the T–S relationship is nonlinear and shows cusps in the direction of isopycnals.
These two process in a perfect correlation between the temperature and salinity contributions to the buoyancy frequency squared. It is +1 when only step-structures show up, and −1 when only intrusions do. This note shows that in the area of the observations some vertical ranges are populated mainly by one or the other limiting type, implying a differential strength in the finestructure producing processes.
Abstract
The f-plane reduced-gravity model has been extended with the parameterization of lateral friction in the momentum equations. The parameterization should preferably fulfill some requisites. One of them is that in the absence of external torques the change in angular momentum should be determined by boundary conditions alone. Internal torques should balance in the angular momentum budget. This requirement is fulfilled when the parameterization in the vertically integrated momentum equations is the divergence of a symmetric stress tensor. These equations solve for the mean transport, which includes implicitly the eddy-induced contribution. Another requirement on the parameterization of lateral stress follows from considering that it should imply kinetic energy dissipation. Both requirements fail with a commonly used parameterization and are fulfilled with the one proposed by C. Schär and R. B. Smith, which also is in near agreement with derivations of the shallow-water equations via vertical integrations of the Navier–Stokes equations. Here, the authors show two other parameterizations that are consistent with the angular momentum and energy requirements. One of the parameterizations follows from the symmetric component of a stress tensor in agreement with the parameterization shown by P. R. Gent to be energetically consistent. The other parameterization is related to the so-called biharmonic dissipation. In general, the difficulty for friction parameterizations is on the energy dissipation requirement, because the one on angular momentum is easily fulfilled.
Abstract
The f-plane reduced-gravity model has been extended with the parameterization of lateral friction in the momentum equations. The parameterization should preferably fulfill some requisites. One of them is that in the absence of external torques the change in angular momentum should be determined by boundary conditions alone. Internal torques should balance in the angular momentum budget. This requirement is fulfilled when the parameterization in the vertically integrated momentum equations is the divergence of a symmetric stress tensor. These equations solve for the mean transport, which includes implicitly the eddy-induced contribution. Another requirement on the parameterization of lateral stress follows from considering that it should imply kinetic energy dissipation. Both requirements fail with a commonly used parameterization and are fulfilled with the one proposed by C. Schär and R. B. Smith, which also is in near agreement with derivations of the shallow-water equations via vertical integrations of the Navier–Stokes equations. Here, the authors show two other parameterizations that are consistent with the angular momentum and energy requirements. One of the parameterizations follows from the symmetric component of a stress tensor in agreement with the parameterization shown by P. R. Gent to be energetically consistent. The other parameterization is related to the so-called biharmonic dissipation. In general, the difficulty for friction parameterizations is on the energy dissipation requirement, because the one on angular momentum is easily fulfilled.
Abstract
The Agulhas Current flows poleward along the western boundary of the southeastern Indian Ocean where, at the southernmost latitude of the African continent, it executes a dramatic anticyclonic turn, or retroflection, to the east. Since 1978, a large number of drifting buoys have passed through this eastward-flowing Agulhas Return Current (ARC), or the zonal frontal boundary between subtropical and subpolar waters of the south Indian Ocean. The spatial distribution of the ensemble-averaged near-surface velocity along the ARC axis reveals a series of steady-state meanders of 700-km wavelength and amplitudes that decrease from 170 km in the first meander to 50 km in the following four meanders. Here an analysis of vorticity balance of the meandering ARC speed axis is presented that demonstrates a balance between the β term and advection of curvature vorticity. This balance implies that the ARC axis, or frontal region, is horizontally nondivergent in agreement with the other observations of flow in the surface layers of near-zonal oceanic fronts.
Abstract
The Agulhas Current flows poleward along the western boundary of the southeastern Indian Ocean where, at the southernmost latitude of the African continent, it executes a dramatic anticyclonic turn, or retroflection, to the east. Since 1978, a large number of drifting buoys have passed through this eastward-flowing Agulhas Return Current (ARC), or the zonal frontal boundary between subtropical and subpolar waters of the south Indian Ocean. The spatial distribution of the ensemble-averaged near-surface velocity along the ARC axis reveals a series of steady-state meanders of 700-km wavelength and amplitudes that decrease from 170 km in the first meander to 50 km in the following four meanders. Here an analysis of vorticity balance of the meandering ARC speed axis is presented that demonstrates a balance between the β term and advection of curvature vorticity. This balance implies that the ARC axis, or frontal region, is horizontally nondivergent in agreement with the other observations of flow in the surface layers of near-zonal oceanic fronts.
Abstract
Recent measurements over the sill in the Yucatan Channel indicate that the deepest flows between the Caribbean Sea and the Gulf of Mexico, those that take place below the sill level at the Florida Straits, have zero mean net mass transport but carry significant amounts of heat and oxygen. The heat flux associated with the mean exchange exports approximately 150 GW from the deep Gulf toward the Caribbean and may be related to the formation of the Yucatan Undercurrent. The eddy heat transfer is also significantly different from zero and exports on average an additional 60 GW. This eddy transfer is attributable mostly to events that last from a few days to about 1.5 months, during which colder water from deeper levels in the Caribbean (beneath 2000 m) flows over the sill within a bottom boundary layer close to 200 m thick. The colder water is also very rich in oxygen, and the deep exchange sustains the near-bottom oxygen maximum in the Gulf of Mexico, whence that cold water must slide down the northern slope of the Yucatan Sill. Estimates of oxygen transport by diffusion from the deep water into the overlying intermediate water (∼50 m3 s−1) and the oxygen consumption reported in the literature (∼100 m3 s−1) are balanced by the rates of mean and eddy transfers over the sill (∼150 m3 s−1). The near-bottom mass transport [∼0.32 Sv (1 Sv ≡ 106 m3 s−1)] measured across the deepest portion of the central Yucatan Channel suggests a residence time for the deep waters of the Gulf of about 250 yr.
Abstract
Recent measurements over the sill in the Yucatan Channel indicate that the deepest flows between the Caribbean Sea and the Gulf of Mexico, those that take place below the sill level at the Florida Straits, have zero mean net mass transport but carry significant amounts of heat and oxygen. The heat flux associated with the mean exchange exports approximately 150 GW from the deep Gulf toward the Caribbean and may be related to the formation of the Yucatan Undercurrent. The eddy heat transfer is also significantly different from zero and exports on average an additional 60 GW. This eddy transfer is attributable mostly to events that last from a few days to about 1.5 months, during which colder water from deeper levels in the Caribbean (beneath 2000 m) flows over the sill within a bottom boundary layer close to 200 m thick. The colder water is also very rich in oxygen, and the deep exchange sustains the near-bottom oxygen maximum in the Gulf of Mexico, whence that cold water must slide down the northern slope of the Yucatan Sill. Estimates of oxygen transport by diffusion from the deep water into the overlying intermediate water (∼50 m3 s−1) and the oxygen consumption reported in the literature (∼100 m3 s−1) are balanced by the rates of mean and eddy transfers over the sill (∼150 m3 s−1). The near-bottom mass transport [∼0.32 Sv (1 Sv ≡ 106 m3 s−1)] measured across the deepest portion of the central Yucatan Channel suggests a residence time for the deep waters of the Gulf of about 250 yr.
Abstract
Data from five moorings deployed in the Bay of Campeche during November 2007–July 2008 are used to analyze subinertial motions of waters below 1000-m depth. To the authors’ knowledge, this is the first time such a comprehensive observational program of direct deep-current measurements has been carried out in the region. The mean currents are in agreement with a cyclonic circulation at 1000-m depth; however, this cyclonic pattern is not so clearly defined at deeper levels. Only at the deepest mooring, located at 3500-m depth, are the mean currents uniform all the way to the bottom. Over the Bay of Campeche’s smooth western slope, currents show features compatible with topographic Rossby waves having vertical trapping scales thicker than 700 m, periods between 5 and 60 days, and horizontal wavelengths of 90–140 km. In contrast, the eastern slopes are characterized by rough topography, and motions with periods longer than 28 days decrease toward the bottom, suggesting a substantial reduction in the low-frequency topographic Rossby wave signal. Velocities from one of the two neighboring moorings located over the eastern rough slope have a strong 3-day period signal, which increases toward the bottom and has a vertical trapping scale of about 350 m. These higher frequency motions are interpreted in terms of edge waves.
Abstract
Data from five moorings deployed in the Bay of Campeche during November 2007–July 2008 are used to analyze subinertial motions of waters below 1000-m depth. To the authors’ knowledge, this is the first time such a comprehensive observational program of direct deep-current measurements has been carried out in the region. The mean currents are in agreement with a cyclonic circulation at 1000-m depth; however, this cyclonic pattern is not so clearly defined at deeper levels. Only at the deepest mooring, located at 3500-m depth, are the mean currents uniform all the way to the bottom. Over the Bay of Campeche’s smooth western slope, currents show features compatible with topographic Rossby waves having vertical trapping scales thicker than 700 m, periods between 5 and 60 days, and horizontal wavelengths of 90–140 km. In contrast, the eastern slopes are characterized by rough topography, and motions with periods longer than 28 days decrease toward the bottom, suggesting a substantial reduction in the low-frequency topographic Rossby wave signal. Velocities from one of the two neighboring moorings located over the eastern rough slope have a strong 3-day period signal, which increases toward the bottom and has a vertical trapping scale of about 350 m. These higher frequency motions are interpreted in terms of edge waves.
Abstract
The coupling between the upper (z < 1000-m depth) and deep (z > 1500 m) circulation in the western Gulf of Mexico (WGoM) driven by the arrival of Loop Current eddies (LCEs) is analyzed from moorings measuring horizontal velocity in the full water column during a 5-yr period (October 2008–October 2013). Nine LCEs crossing the mooring array are documented. A composite of these events shows that strong northward currents at depth having speeds of 0.1–0.2 m s−1 precede (~10–20 days) the strong northward near-surface currents (~0.5 m s−1) characteristic of the western rim of the LCEs. These deep northward flow intensifications are followed by southward deep flows coupled with the surface-intensified southward current of the eastern (rear) part of the LCEs crossing the array. These results are consistent with the existence of a deep anticyclone leading and a cyclone trailing the upper-layer LCEs. Objectively interpolated regional maps of velocities and vertical vorticity obtained from up to 30 moorings indicate the mean circulation at 100-m depth in the northern WGoM is mostly anticyclonic and enhanced by the arrival of the westward-propagating LCEs, while the southern part is dominated by the presence of a semipermanent cyclonic structure (Bay of Campeche cyclonic gyre). At 1500-m depth, the mean circulation follows the slope in a cyclonic sense and shows a cyclonic vorticity maximum on the abyssal plane consistent with the LCE deep flow composites. This suggests the LCEs strongly modulate not only the upper-layer circulation but also impact the deep flow.
Abstract
The coupling between the upper (z < 1000-m depth) and deep (z > 1500 m) circulation in the western Gulf of Mexico (WGoM) driven by the arrival of Loop Current eddies (LCEs) is analyzed from moorings measuring horizontal velocity in the full water column during a 5-yr period (October 2008–October 2013). Nine LCEs crossing the mooring array are documented. A composite of these events shows that strong northward currents at depth having speeds of 0.1–0.2 m s−1 precede (~10–20 days) the strong northward near-surface currents (~0.5 m s−1) characteristic of the western rim of the LCEs. These deep northward flow intensifications are followed by southward deep flows coupled with the surface-intensified southward current of the eastern (rear) part of the LCEs crossing the array. These results are consistent with the existence of a deep anticyclone leading and a cyclone trailing the upper-layer LCEs. Objectively interpolated regional maps of velocities and vertical vorticity obtained from up to 30 moorings indicate the mean circulation at 100-m depth in the northern WGoM is mostly anticyclonic and enhanced by the arrival of the westward-propagating LCEs, while the southern part is dominated by the presence of a semipermanent cyclonic structure (Bay of Campeche cyclonic gyre). At 1500-m depth, the mean circulation follows the slope in a cyclonic sense and shows a cyclonic vorticity maximum on the abyssal plane consistent with the LCE deep flow composites. This suggests the LCEs strongly modulate not only the upper-layer circulation but also impact the deep flow.
Abstract
Sixteen months of observations from a surface-to-bottom mooring in the central Gulf of Mexico show that acoustic Doppler current profilers (ADCPs) are useful for directly measuring the vertical velocity within mesoscale anticyclonic eddies, such as those shed from the Loop Current; and combining simultaneous temperature measurements, vertical heat flux can also be estimated (as a covariance of both variables). There is evidence of significant and coherent signals of vertical velocity ∼2–3 mm s−1 and vertical heat (temperature) transport ∼10−3 °C m s−1 during the presence of three anticyclones. A simple analysis shows downward flow near the eddies’ centers above 350 m and essentially upward flow in the peripheries, but below 700-m depth the pattern is indeed the opposite; however, further study is necessary to determine the eddies’ interior structures. The observations also suggest the existence of a vertical convergence of heat somewhere around 600-m depth, and estimations of adiabatic heat flux suggest that part of the converged heat, which is not recirculated within the eddy, must escape from the eddy and flow upward along the isopycnals up to the surface layers. This is in good agreement with previous results that have suggested that an excess heat gained by the Gulf in the intermediate levels through exchanges with the Caribbean Sea must be exported to the upper layers by an upward mean heat flux.
Abstract
Sixteen months of observations from a surface-to-bottom mooring in the central Gulf of Mexico show that acoustic Doppler current profilers (ADCPs) are useful for directly measuring the vertical velocity within mesoscale anticyclonic eddies, such as those shed from the Loop Current; and combining simultaneous temperature measurements, vertical heat flux can also be estimated (as a covariance of both variables). There is evidence of significant and coherent signals of vertical velocity ∼2–3 mm s−1 and vertical heat (temperature) transport ∼10−3 °C m s−1 during the presence of three anticyclones. A simple analysis shows downward flow near the eddies’ centers above 350 m and essentially upward flow in the peripheries, but below 700-m depth the pattern is indeed the opposite; however, further study is necessary to determine the eddies’ interior structures. The observations also suggest the existence of a vertical convergence of heat somewhere around 600-m depth, and estimations of adiabatic heat flux suggest that part of the converged heat, which is not recirculated within the eddy, must escape from the eddy and flow upward along the isopycnals up to the surface layers. This is in good agreement with previous results that have suggested that an excess heat gained by the Gulf in the intermediate levels through exchanges with the Caribbean Sea must be exported to the upper layers by an upward mean heat flux.
Abstract
Two glider transects in the Gulf of Mexico reveal fine-vertical-scale thermohaline structures within a Loop Current eddy (LCE). Partially compensating temperature and salinity anomalies are shown to organize as thin layers below the eddy and near its edges. The anomalies have vertical scales ranging from 2 to 60 m and extend laterally over distances up to 120 km. These structures are evident in synthetic acoustic reflectivity derived from the glider data and are reminiscent of the intense layering observed in seismic imagery around meddies, Agulhas rings, and warm-core Kuroshio rings. The observed layers are aligned with the geostrophic streamfunction rather than isopycnals and develop preferentially in zones of intense vertical shear. These observations suggest that tracer stirring by the eddy’s vertically sheared azimuthal flow might be an important process for their generation. In an attempt to rationalize this process, high-resolution quasigeostrophic simulations were performed using an idealized anticyclonic ring for the initial conditions. As the vortex destabilizes, layering rapidly develops in the model, resulting in structures similar to those found in the observation data. Passive tracer experiments also suggest that the layers form through differential advection of the tracer field by the vertically sheared flow associated with the LCE.
Abstract
Two glider transects in the Gulf of Mexico reveal fine-vertical-scale thermohaline structures within a Loop Current eddy (LCE). Partially compensating temperature and salinity anomalies are shown to organize as thin layers below the eddy and near its edges. The anomalies have vertical scales ranging from 2 to 60 m and extend laterally over distances up to 120 km. These structures are evident in synthetic acoustic reflectivity derived from the glider data and are reminiscent of the intense layering observed in seismic imagery around meddies, Agulhas rings, and warm-core Kuroshio rings. The observed layers are aligned with the geostrophic streamfunction rather than isopycnals and develop preferentially in zones of intense vertical shear. These observations suggest that tracer stirring by the eddy’s vertically sheared azimuthal flow might be an important process for their generation. In an attempt to rationalize this process, high-resolution quasigeostrophic simulations were performed using an idealized anticyclonic ring for the initial conditions. As the vortex destabilizes, layering rapidly develops in the model, resulting in structures similar to those found in the observation data. Passive tracer experiments also suggest that the layers form through differential advection of the tracer field by the vertically sheared flow associated with the LCE.
Abstract
The seasonal cycle of transport through the Yucatan Channel is estimated from 59 months of direct mooring measurements and 23 years of a transport proxy from AVISO sea level across the channel. Both exhibit a seasonal cycle with a maximum in summer (July–August) but have a minimum in March for the mooring and in November for AVISO data. The annual and semiannual harmonics explain respectively 19% (~32%) and 6% (~4%) of the subinertial variance of the moored (proxy) transports. Seasonal variations of zonal wind stress and anticyclonic wind stress curl over the Cayman Sea appear to be positively correlated with transport in Yucatan Channel and the northward extension of the Loop Current during the summer, agreeing to some extent with modeling results previously reported. Transport increments during summer coincide with enhanced regional easterly winds and anticyclonic wind stress curl in 60% of the cases (of 23 years). However, this connection is not as tight as model results suggest during winter. The summer correlation only appears to be valid in a broad statistical sense since it is modulated by large interannual and higher-frequency variability. Moored time series confirm previous results that the transport signal on the western side of the channel is quite different from the total Yucatan Channel transport and that eddy kinetic energy at higher frequencies (50–100 days) dominates the variability and is characterized by a relatively low net transport signal, with flow of opposite signs on each side of the channel.
Abstract
The seasonal cycle of transport through the Yucatan Channel is estimated from 59 months of direct mooring measurements and 23 years of a transport proxy from AVISO sea level across the channel. Both exhibit a seasonal cycle with a maximum in summer (July–August) but have a minimum in March for the mooring and in November for AVISO data. The annual and semiannual harmonics explain respectively 19% (~32%) and 6% (~4%) of the subinertial variance of the moored (proxy) transports. Seasonal variations of zonal wind stress and anticyclonic wind stress curl over the Cayman Sea appear to be positively correlated with transport in Yucatan Channel and the northward extension of the Loop Current during the summer, agreeing to some extent with modeling results previously reported. Transport increments during summer coincide with enhanced regional easterly winds and anticyclonic wind stress curl in 60% of the cases (of 23 years). However, this connection is not as tight as model results suggest during winter. The summer correlation only appears to be valid in a broad statistical sense since it is modulated by large interannual and higher-frequency variability. Moored time series confirm previous results that the transport signal on the western side of the channel is quite different from the total Yucatan Channel transport and that eddy kinetic energy at higher frequencies (50–100 days) dominates the variability and is characterized by a relatively low net transport signal, with flow of opposite signs on each side of the channel.
Abstract
Velocity data from a mooring array deployed northeast of the Campeche Bank (CB) show the presence of subinertial, high-frequency (below 15 days) velocity fluctuations within the core of the northward flowing Loop Current. These fluctuations are associated with the presence of surface-intensified Loop Current frontal eddies (LCFEs), with cyclonic vorticity and diameter < 100 km. These eddies are well reproduced by a high-resolution numerical simulation of the Gulf of Mexico, and the model analysis suggests that they originate along and north of the CB, their main energy source being the mixed baroclinic–barotropic instability of the northward flow along the shelf break. There is no indication that these high-frequency LCFEs contribute to the LC eddy detachment in contrast to the low-frequency LCFEs (periods > 30 days) that have been linked to Caribbean eddies and the LC separation process. Model results show that wind variability associated with winter cold surges are responsible for the emergence of high-frequency LCFEs in a narrow band of periods (6–10 day) in the region of the CB. The dynamical link between the formation of these LCFEs and the wind variability is not direct: (i) the large-scale wind perturbations generate sea level anomalies on the CB as well as first baroclinic mode, coastally trapped waves in the western Gulf of Mexico; (ii) these waves propagate cyclonically along the coast; and (iii) the interaction of these anomalies with the Loop Current triggers cyclonic vorticity perturbations that grow in intensity as they propagate downstream and develop into cyclonic eddies when they flow north of the Yucatan shelf.
Abstract
Velocity data from a mooring array deployed northeast of the Campeche Bank (CB) show the presence of subinertial, high-frequency (below 15 days) velocity fluctuations within the core of the northward flowing Loop Current. These fluctuations are associated with the presence of surface-intensified Loop Current frontal eddies (LCFEs), with cyclonic vorticity and diameter < 100 km. These eddies are well reproduced by a high-resolution numerical simulation of the Gulf of Mexico, and the model analysis suggests that they originate along and north of the CB, their main energy source being the mixed baroclinic–barotropic instability of the northward flow along the shelf break. There is no indication that these high-frequency LCFEs contribute to the LC eddy detachment in contrast to the low-frequency LCFEs (periods > 30 days) that have been linked to Caribbean eddies and the LC separation process. Model results show that wind variability associated with winter cold surges are responsible for the emergence of high-frequency LCFEs in a narrow band of periods (6–10 day) in the region of the CB. The dynamical link between the formation of these LCFEs and the wind variability is not direct: (i) the large-scale wind perturbations generate sea level anomalies on the CB as well as first baroclinic mode, coastally trapped waves in the western Gulf of Mexico; (ii) these waves propagate cyclonically along the coast; and (iii) the interaction of these anomalies with the Loop Current triggers cyclonic vorticity perturbations that grow in intensity as they propagate downstream and develop into cyclonic eddies when they flow north of the Yucatan shelf.