Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Joseph Galewsky x
  • All content x
Clear All Modify Search
Joseph Galewsky

Abstract

In situ measurements of water vapor isotopic composition from the subtropical Chilean Andes, supported by mesoscale model simulations and diagnostic analyses, document the processes governing the transport of dry air and isotopically depleted water vapor from the midlatitudes into the subtropics during a South American cold-air surge in July 2014. On 23 July 2014, temperatures on the Chajnantor Plateau reached −18°C, among the lowest temperatures on record for the site. On 26 July 2014, water vapor δD and δ18O reached a low of −538 ± 1.6‰ and −71.7 ± 0.2‰, among the lowest values on record. Numerical simulations show that the dynamics of the event were consistent with previous studies of South American cold-air outbreaks. Back-trajectory analyses show that the isotopically depleted water vapor that reached Chajnantor on July 26 was last saturated over the South Pacific on July 23 at 300 hPa at a temperature of about −50°C under ice supersaturation with RHice of about 110%. The water vapor traveled to Chajnantor along a nearly isentropic path following saturation. Modeling of the isotopic data require condensation at temperatures between −50°C and −53°C under supersaturation with RHice between 112% and 118%, followed by less than 25% moistening during transport. These results show that measurements of water vapor isotopic composition can provide observational constraints on in-cloud processes that influence the humidity of the subtropics.

Full access
Joseph Galewsky

Abstract

Idealized numerical simulations of moist strongly stratified flow over topography are used to study the processes that control orographic clouds in terrain-blocked flows as a joint function of the nondimensional flow parameter Nh/U, the horizontal topographic aspect ratio β, and the Rossby radius of deformation Nh/f. The simulations show the competition between enhanced upstream condensation in the secondary vertically propagating gravity wave and the reduction of condensation owing to enhanced low-level flow deflection. As Nh/U increases above about 1.5, the tendency for flow to be deflected around the barrier reduces cloud formation in the primary gravity wave over the ridge, while increasing β expands low-level clouds over a broader upstream area. Ice clouds may form aloft in the secondary vertically propagating gravity wave and extend upstream for several hundred kilometers. In terrain-blocked flows, more than half of the condensate mass develops upstream of the barrier in the secondary gravity wave, while in unblocked flows most of the condensate is downstream of the barrier in the primary lee wave. In 2D, none of the flow can be diverted around the barrier, and it therefore produces a much more vigorous hydrologic cycle than over long (β = 8) 3D ridges, increasing upstream lifting and cloud water content by at least a factor of 2, and generating primary wave clouds that are not produced in the 3D case. Rotation reduces the upstream extent of condensation in blocked flows to a region on the order of the radius of deformation and in 3D induces a marked asymmetry in the lifting and condensation upstream of the terrain.

Full access
Joseph Galewsky and Adam Sobel

Abstract

The dynamics of moist orographic flows during the January 1997 floods in northern and central California are investigated using numerical simulations computed with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). Early in the event (31 December 1996–1 January 1997), the low-level winds offshore of California’s central coast were blocked by the topography of the Santa Lucia Range, and the low-level winds in the Central Valley were blocked by the topography of the central Sierra Nevada Range. In contrast, moisture-laden winds along the northern Coast Ranges and the northern Sierra Nevada flowed over topographic barriers. As the core of humid air migrated to the south over 24 h, the low-level barrier jets weakened as the atmospheric stability decreased, bringing heavy rainfall to the central and southern Sierra Nevada at the end of the event. The heavy precipitation during this event was largely controlled by the interaction of the flow with topography, with little contribution from non–topographically forced dynamical uplift. Latent heating was essential for lowering the effective stability of the flow and allowing the winds to flow over mountainous terrain, particularly in the northern Coast Ranges, and for enhancing the low-level jet and associated moisture transport. The horizontal distribution of static stability played a key role in the event by setting up a complex combination of flow-over and flow-around regimes that enhanced uplift in the northern Sierra Nevada during the period of heaviest rainfall.

Full access
Joseph Galewsky and David Rabanus

Abstract

The humidity of the free troposphere can be modeled, to first order, in terms of cold-point dehydration, followed by moistening via mixing with boundary layer air. The relative balance between these processes is of prime interest for understanding interannual variability of humidity and for understanding the water vapor feedback. Measurements of water vapor isotopic composition can provide quantitative constraints on these processes. The authors developed a stochastic model that parameterizes water vapor isotopic composition in terms of these processes and fit the model parameters to data from the Chajnantor Plateau, Chile (23°S). For August–November 2012, the average mixing ratio was 1680 ppmv, with mean water vapor δD of −234‰ and mean deuterium excess of 21‰. The data were best fit by an asymmetric last-saturation distribution with mean last-saturation mixing ratio r s of 391 (+45, −75) ppmv, a median r s of 368 (+45, −75) ppmv, and a mean mixing fraction between the freeze-dried air and moist boundary layer air of . Measurements from August to November 2014 had an average mixing ratio of 2210 ppmv, an average δD of −220‰, and an average deuterium excess of 14‰. The last-saturation distribution for this period was less skewed than for 2012, with an average r s of 520 (+42, −75) ppmv and a median r s of 507 (+25, −75) ppmv. The mean mixing fraction for 2014 was . The results show that the moistening in 2014, relative to 2012, requires increases in both the last-saturation mixing ratio and the postcondensation moistening and illustrate the utility of isotopic measurements for constraining the processes governing subtropical humidity.

Full access
John V. Hurley and Joseph Galewsky

Abstract

Water vapor tracers of last saturation were used in an atmospheric tracer transport model to evaluate ENSO variability in the generation of the dry air that defines the subtropical middle troposphere over the North Pacific. Fifteen Northern Hemisphere winters, including El Niño, La Niña, and ENSO-neutral seasons, were evaluated using both Northern Hemisphere and global last saturation water vapor tracer configurations. During El Niño northern winter, the free troposphere over the subtropical North Pacific is both drier and warmer than during La Niña.

The probability distributions of the last saturation position for the dry air in the middle troposphere were evaluated over the subtropical North Pacific and were found to be further poleward, at a higher altitude, and more westerly in their components during the warm phase compared to the cold phase. During warm phase (cold phase) northern winter, 57% (49%) of the air at 20°N and 633 hPa over the North Pacific was last saturated poleward of 20°N and above 500 hPa. Coherency was demonstrated between tropical sea surface temperatures, extratropical atmospheric saturation, and subtropical aridity of the middle troposphere. The stronger westerly component of last saturation during the warm phase ties ENSO-variable subtropical aridity to midlatitude westerlies when there is enhanced baroclinicity and an equatorward migration of the Pacific storm track.

Humidity reconstructions from the water vapor tracers capture observed ENSO humidity variability and demonstrate that it can be explained in terms of changes in the location of last saturation, and not by changes in the temperature field. This study shows how teleconnections between the tropical ocean and the extratropical upper troposphere can impact the humidity of the middle troposphere of the subtropical dry regions.

Full access
Joseph Galewsky and Kimberly Samuels-Crow

Abstract

Austral summer transport of water vapor to the southern South American Altiplano is investigated using in situ measurements of water vapor isotopic composition collected from 1 November 2012 to 10 February 2013 on the Chajnantor Plateau in the Chilean Andes. Onset of the wet season in December was associated with an increase in mixing ratios from an average of 1500 ppmv during the winter dry season to 5400 ppmv in early December. Water vapor isotopes δD and δ 18O increased from dry season averages of −235‰ and −31‰, respectively, to wet season averages of −142‰ and −17‰, reaching as high as −70‰ and −17‰, respectively. The highest water vapor δ values were close to those measured in coastal settings, suggesting little condensation during transport to the site. About 5% of the wet season data have δ values that are lower than expected for Rayleigh distillation and are associated with high relative humidity (>75%), easterly winds, and periods of low outgoing longwave radiation over the Altiplano, consistent with moistening by deep convection. The remainder of the data have δ values that are greater than expected for Rayleigh distillation, up to 250‰ above the Rayleigh curve. These data are consistent with mixing between very dry air and moist air from the boundary layer. The data show intraseasonal variability coherently linked to the position of the Bolivian high, with moist air associated with a southward displacement in the Bolivian high. The humidity over the southern Altiplano during the wet season reflects a balance among advective drying, advective moistening with little condensation, and convective moistening.

Full access
Jonathon S. Wright, Adam Sobel, and Joseph Galewsky

Abstract

The zonal mean relative humidity response to a doubling of CO2 in a climate model is examined using a global climate model and an offline tracer transport model. Offline tracer transport model simulations are driven by the output from two configurations of the climate model, one with 1979 concentrations of atmospheric greenhouse gases and one with doubled CO2. A set of last saturation tracers is applied within the tracer transport model to diagnose the dynamics responsible for features in the water vapor field. Two different methods are used to differentiate the effects of circulation and transport shifts from spatially inhomogeneous temperature changes. The first of these uses the tracer transport model and is achieved by decoupling the input temperature and circulation fields; the second uses the reconstruction of humidity from the last saturation tracers and is achieved by decoupling the tracer concentrations from their saturation specific humidities. The responses of the tropical and subtropical relative humidities are found to be largely dependent on circulation and transport changes, particularly a poleward expansion of the Hadley cell, a deepening of the height of convective detrainment, a poleward shift of the extratropical jets, and an increase in the height of the tropopause. The last saturation tracers are used to illustrate the influence of changes in transport pathways within the GCM on the zonal mean relative humidity, particularly in the tropical upper troposphere and subtropical dry zones. Relative humidity changes near the extratropical tropopause and in the lower troposphere are largely dependent on changes in the distribution and gradients of temperature. Increases in relative humidity near the extratropical tropopause in both hemispheres are coincident with increases in the occurrence of local saturation and high cloud cover.

Full access
Joseph Galewsky, Adam Sobel, and Isaac Held

Abstract

A technique for diagnosing the mechanisms that control the humidity in a general circulation model (GCM) or observationally derived meteorological analysis dataset is presented. The technique involves defining a large number of tracers, each of which represents air that has last been saturated in a particular region of the atmosphere. The time-mean tracer fields show the typical pathways that air parcels take between one occurrence of saturation and the next. The tracers provide useful information about how different regions of the atmosphere influence the humidity elsewhere. Because saturation vapor pressure is a function only of temperature and assuming mixing ratio is conserved for unsaturated parcels, these tracer fields can also be used together with the temperature field to reconstruct the water vapor field. The technique is first applied to an idealized GCM in which the dynamics are dry and forced using the Held–Suarez thermal relaxation, but the model carries a passive waterlike tracer that is emitted at the surface and lost due to large-scale condensation with zero latent heat release and no condensate retained. The technique provides an accurate reconstruction of the simulated water vapor field. In this model, the dry air in the subtropical troposphere is produced primarily by isentropic transport and is moistened somewhat by mixing with air from lower levels, which has not been saturated since last contact with the surface. The technique is then applied to the NCEP–NCAR reanalysis data from December–February (DJF) 2001/02, using the offline tracer transport model MATCH. The results show that the dryness of the subtropical troposphere is primarily controlled by isentropic transport of very dry air by midlatitude eddies and that diabatic descent from the tropical upper troposphere plays a secondary role in controlling the dryness of the subtropics.

Full access
Robert L. Korty, Suzana J. Camargo, and Joseph Galewsky

Abstract

Large-scale environmental factors that favor tropical cyclogenesis are calculated and examined in simulations of the Last Glacial Maximum (LGM) from the Paleoclimate Modelling Intercomparison Project Phase 2 (PMIP2). Despite universally colder conditions at the LGM, values of tropical cyclone potential intensity, which both serves as an upper bound on thermodynamically achievable intensity and indicates regions supportive of the deep convection required, are broadly similar in magnitude to those in preindustrial era control simulation. Some regions, including large areas of the central and western North Pacific, feature higher potential intensities at the LGM than they do in the control runs, while other regions including much of the Atlantic and Indian Oceans are lower. Changes in potential intensity are strongly correlated with the degree of surface cooling during the LGM. Additionally, two thermodynamic parameters—one that measures midtropospheric entropy deficits relevant for tropical cyclogenesis and another related to the time required for genesis—are broadly more favorable in the LGM simulation than in the preindustrial era control. A genesis potential index yields higher values for the LGM in much of the western Pacific, a feature common to nearly all of the individual models examined.

Full access
Robert L. Korty, Suzana J. Camargo, and Joseph Galewsky

Abstract

The thermodynamic factors related to tropical cyclone genesis are examined in several simulations of the middle part of the Holocene epoch when the precession of Earth’s orbit altered the seasonal distribution of solar radiation and in one transient simulation of the millennium preceding the industrial era. The thermodynamic properties most crucial for genesis display a broad stability across both periods, although both orbital variations during the mid-Holocene (MH) 6000 years ago (6ka) and volcanic eruptions in the transient simulation have detectable effects. It is shown that the distribution of top-of-the-atmosphere radiation 6ka altered the Northern Hemisphere seasonal cycle of the potential intensity of tropical cyclones in addition to slightly increasing the difference between middle tropospheric and boundary layer entropy, a parameter that has been related to the incubation period required for genesis. The Southern Hemisphere, which receives more solar radiation during its storm season today than it did 6ka, displays slightly more favorable thermodynamic properties during the MH than in the preindustrial era control. Surface temperatures over the ocean in both hemispheres respond to radiation anomalies more slowly than those in upper levels, altering the thermal stability.

Volcanism produces a sharp but transient temperature response in the last-millennium simulation that strongly reduces potential intensity during the seasons immediately following a major eruption. Here, too, the differential vertical temperature response is key: temperatures in the lower and middle troposphere cool, while those near the tropopause rise. Aside from these deviations, there is no substantial variation in thermodynamic properties over the 1000-yr simulation.

Full access