Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Joseph H. LaCasce x
  • All content x
Clear All Modify Search
Joseph H. LaCasce

Abstract

Nonlinear, quasigeostrophic, f-plane vortices in two layers over a topographic slope are considered. Scaling arguments suggest two parameters that dictate the effective strength of the slope: the first indicates the likelihood of dispersion at depth, and the second relates to baroclinic stability. If the deep flow is only weakly dispersive (weak slopes), an initially barotropic vortex can translate barotropically across the isobaths, provided the vortex scale exceeds the deformation scale. Over stronger slopes, the vortex separates into topographic waves and a stationary, surface-trapped vortex. An initially surface-trapped vortex larger than deformation scale becomes unstable over a weak slope, as it does over a flat bottom. However, a strong slope can stabilize the vortex to small perturbations, despite the large vortex scale. The effective slope parameters depend not only on topographic grade, but on vortex strength and size, and on the ambient stratification. Parameters obtained with representative oceanic values suggest that topographically induced vertical decoupling may be quite common.

Full access
J. H. LaCasce and Joseph Pedlosky

Abstract

The properties of baroclinic, quasigeostrophic Rossby basin waves are examined. Full analytical solutions are derived to elucidate the response in irregular basins, specifically in a (horizontally) tilted rectangular basin and in a circular one. When the basin is much larger than the (internal) deformation radius, the basin mode properties depend profoundly on whether one allows the streamfunction to oscillate at the boundary or not, as has been shown previously. With boundary oscillations, modes occur that have low frequencies and, with scale-selective dissipation, decay at a rate less than or equal to that of the imposed dissipation. These modes approximately satisfy the long-wave equation in the interior. Using both unforced and forced solutions, the variation of the response with basin geometry and dissipation is documented. The long-wave modes obtain with scale-selective dissipation, but also with damping that acts equally at all scales. One finds evidence of them as well in the forced response, even when the dissipation is weak and the corresponding free modes are apparently absent.

Full access
Andreas Klocker, Raffaele Ferrari, and Joseph H. LaCasce

Abstract

Particle- and tracer-based estimates of lateral diffusivities are used to estimate the suppression of eddy mixing across strong currents. Particles and tracers are advected using a velocity field derived from sea surface height measurements from the South Pacific, in a region west of Drake Passage. This velocity field has been used in a companion paper to show that both particle- and tracer-based estimates of eddy diffusivities are equivalent, despite recent claims to the contrary. These estimates of eddy diffusivities are here analyzed to show 1) that the degree of suppression of mixing across the strong Antarctic Circumpolar Current is correctly predicted by mixing length theory modified to include eddy propagation along the mean flow and 2) that the suppression can be inferred from particle trajectories by studying the structure of the autocorrelation function of the particle velocities beyond the first zero crossing. These results are then used to discuss how to compute lateral and vertical variations in eddy diffusivities using floats and drifters in the real ocean.

Full access
Bruce A. Warren, Joseph H. LaCasce, and Paul E. Robbins

Abstract

No abstract available.

Full access
Bruce A. Warren, Joseph H. LaCasce, and Paul E. Robbins

Abstract

No abstract available.

Full access
Dhruv Balwada, Joseph H. LaCasce, Kevin G. Speer, and Raffaele Ferrari

Abstract

Stirring in the subsurface Southern Ocean is examined using RAFOS float trajectories, collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), along with particle trajectories from a regional eddy permitting model. A central question is the extent to which the stirring is local, by eddies comparable in size to the pair separation, or nonlocal, by eddies at larger scales. To test this, we examine metrics based on averaging in time and in space. The model particles exhibit nonlocal dispersion, as expected for a limited resolution numerical model that does not resolve flows at scales smaller than ~10 days or ~20–30 km. The different metrics are less consistent for the RAFOS floats; relative dispersion, kurtosis, and relative diffusivity suggest nonlocal dispersion as they are consistent with the model within error, while finite-size Lyapunov exponents (FSLE) suggests local dispersion. This occurs for two reasons: (i) limited sampling of the inertial length scales and a relatively small number of pairs hinder statistical robustness in time-based metrics, and (ii) some space-based metrics (FSLE, second-order structure functions), which do not average over wave motions and are reflective of the kinetic energy distribution, are probably unsuitable to infer dispersion characteristics if the flow field includes energetic wave motions that do not disperse particles. The relative diffusivity, which is also a space-based metric, allows averaging over waves to infer the dispersion characteristics. Hence, given the error characteristics of the metrics and data used here, the stirring in the DIMES region is likely to be nonlocal at scales of 5–100 km.

Open access
Ada Gjermundsen, Joseph H. LaCasce, and Liv Denstad

Abstract

The global circulation driven solely by relaxation to an idealized surface temperature profile and to interior mixing is examined. Forcing by winds and evaporation/precipitation is excluded. The resulting circulation resembles the observed in many ways, and the overturning is of similar magnitude. The overturning is driven by large-scale upwelling in the interior (which is relatively large, because of the use of a constant mixing coefficient). The compensating downwelling occurs in the northern North Atlantic and in the Ross and Weddell Seas, with an additional, smaller contribution from the northern North Pacific. The latter is weaker because the Bering Strait limits the northward extent of the flow. The downwelling occurs in frictional layers near the boundaries and depends on the lateral shear in the horizontal flow. The shear, in turn, is linked to the imposed surface temperature gradient via thermal wind, and as such, the downwelling can be reduced or eliminated in selected regions by removing the surface gradient. Doing so in the northern North Atlantic causes the (thermally driven) Antarctic Circumpolar Current to intensify, increasing the sinking along Antarctica. Eliminating the surface gradient in the Southern Ocean increases the sinking in the North Atlantic and Pacific. As there is upwelling also in the western boundary currents, the flow must increase even more to accomplish the necessary downwelling. The implications of the results are then considered, particularly with respect to Arctic intensification of global warming, which will reduce the surface temperature gradient.

Full access
Bruce A. Warren, Joseph H. LaCasce, and Paul E. Robbins

Abstract

The authors point out that, since the “form-drag” force balance commonly advanced for the Antarctic Circumpolar Current is really just a statement that northward Ekman transport in the circumpolar Drake Passage zone is compensated by deep southward geostrophic flow, the balance is actually irrelevant to the magnitude of the current itself. It is thus misleading to ascribe a role to form drag in its physics. Sverdrup dynamics seems to offer a more promising analysis of the real Circumpolar Current–as proposed long ago.

Full access
Jinbo Wang, Glenn R. Flierl, Joseph H. LaCasce, Julie L. McClean, and Amala Mahadevan

Abstract

A new method is proposed for extrapolating subsurface velocity and density fields from sea surface density and sea surface height (SSH). In this, the surface density is linked to the subsurface fields via the surface quasigeostrophic (SQG) formalism, as proposed in several recent papers. The subsurface field is augmented by the addition of the barotropic and first baroclinic modes, whose amplitudes are determined by matching to the sea surface height (pressure), after subtracting the SQG contribution. An additional constraint is that the bottom pressure anomaly vanishes. The method is tested for three regions in the North Atlantic using data from a high-resolution numerical simulation. The decomposition yields strikingly realistic subsurface fields. It is particularly successful in energetic regions like the Gulf Stream extension and at high latitudes where the mixed layer is deep, but it also works in less energetic eastern subtropics. The demonstration highlights the possibility of reconstructing three-dimensional oceanic flows using a combination of satellite fields, for example, sea surface temperature (SST) and SSH, and sparse (or climatological) estimates of the regional depth-resolved density. The method could be further elaborated to integrate additional subsurface information, such as mooring measurements.

Full access
Jane O’Dwyer, Richard G. Williams, Joseph H. LaCasce, and Kevin G. Speer

Abstract

Float trajectories are compared with the distribution of climatological potential vorticity, Q, on approximate isentropic surfaces for intermediate waters in the North Atlantic. The time-mean displacement and eddy dispersion are calculated for clusters of floats in terms of their movement along and across Q contours. For float clusters with significant mean velocities, the mean flow crosses Q contours at an angle of typically less than 20°–30° in magnitude in the ocean interior. The implied Peclet number in the ocean interior ranges from 1 to 19 with a weighted-mean value of 4.4. This mean Peclet number suggests that there is significant eddy mixing in the ocean interior: tracers should only be quasi-conserved along mean streamlines over a subbasin scale, rather than over an entire basin. The mean flow also strongly crosses Q contours near the western boundary in the Tropics, where the implied Peclet number is 0.7; this value may be a lower bound as Q contours are assumed to be zonal and relative vorticity is ignored. Float clusters with a lifetime greater than 200 days show anisotropic dispersion with greater dispersion along Q contours, than across them; float clusters with shorter lifetimes are ambiguous. This anisotropic dispersion along Q contours cannot generally be distinguished from enhanced dispersion along latitude circles since Q contours are generally zonal for these cases. However, for the null case of uniform Q for the Gulf Stream at 2000 m, there is strong isotropic dispersion, rather than enhanced zonal dispersion. In summary, diagnostics suggest that floats preferentially spread along Q contours over a subbasin scale and imply that passive tracers should likewise preferentially spread along Q contours in the ocean interior.

Full access