Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Joseph J. Sirutis x
  • Refine by Access: All Content x
Clear All Modify Search
Robert E. Tuleya, Morris Bender, Thomas R. Knutson, Joseph J. Sirutis, Biju Thomas, and Isaac Ginis

Abstract

The GFDL hurricane modeling system, initiated in the 1970s, has progressed from a research tool to an operational system over four decades. This system is still in use today in research and operations, and its evolution will be briefly described. This study used an idealized version of the 2014 GFDL model to test its sensitivity across a wide range of three environmental factors that are often identified as key factors in tropical cyclone (TC) evolution: SST, atmospheric stability (upper-air thermal anomalies), and vertical wind shear (westerly through easterly). A wide range of minimum central pressure intensities resulted (905–980 hPa). The results confirm that a scenario (e.g., global warming) in which the upper troposphere warms relative to the surface will have less TC intensification than one with a uniform warming with height. The TC rainfall is also investigated for the SST–stability parameter space. Rainfall increases for combinations of SST increase and increasing stability similar to global warming scenarios, consistent with climate change TC downscaling studies with the GFDL model. The forecast system’s sensitivity to vertical shear was also investigated. The idealized model simulations showed weak disturbances dissipating under strong easterly and westerly shear of 10 m s−1. A small bias for greater intensity under easterly sheared versus westerly sheared environments was found at lower values of SST. The impact of vertical shear on intensity was different when a strong vortex was used in the simulations. In this case, none of the initial disturbances weakened, and most intensified to some extent.

Full access
Thomas R. Knutson, Joseph J. Sirutis, Stephen T. Garner, Isaac M. Held, and Robert E. Tuleya

In this study, a new modeling framework for simulating Atlantic hurricane activity is introduced. The model is an 18-km-grid nonhydrostatic regional model, run over observed specified SSTs and nudged toward observed time-varying large-scale atmospheric conditions (Atlantic domain wavenumbers 0–2) derived from the National Centers for Environmental Prediction (NCEP) reanalyses. Using this “perfect large-scale model” approach for 27 recent August–October seasons (1980–2006), it is found that the model successfully reproduces the observed multidecadal increase in numbers of Atlantic hurricanes and several other tropical cyclone (TC) indices over this period. The correlation of simulated versus observed hurricane activity by year varies from 0.87 for basinwide hurricane counts to 0.41 for U.S. landfalling hurricanes. For tropical storm count, accumulated cyclone energy, and TC power dissipation indices the correlation is ~0.75, for major hurricanes the correlation is 0.69, and for U.S. landfalling tropical storms, the correlation is 0.57. The model occasionally simulates hurricanes intensities of up to category 4 (~942 mb) in terms of central pressure, although the surface winds (< 47 m s−1) do not exceed category-2 intensity. On interannual time scales, the model reproduces the observed ENSO-Atlantic hurricane covariation reasonably well. Some notable aspects of the highly contrasting 2005 and 2006 seasons are well reproduced, although the simulated activity during the 2006 core season was excessive. The authors conclude that the model appears to be a useful tool for exploring mechanisms of hurricane variability in the Atlantic (e.g., shear versus potential intensity contributions). The model may be capable of making useful simulations/projections of pre-1980 or twentieth-century Atlantic hurricane activity. However, the reliability of these projections will depend on obtaining reliable large-scale atmospheric and SST conditions from sources external to the model.

Full access
Thomas R. Knutson, Joseph J. Sirutis, Ming Zhao, Robert E. Tuleya, Morris Bender, Gabriel A. Vecchi, Gabriele Villarini, and Daniel Chavas

Abstract

Global projections of intense tropical cyclone activity are derived from the Geophysical Fluid Dynamics Laboratory (GFDL) High Resolution Atmospheric Model (HiRAM; 50-km grid) and the GFDL hurricane model using a two-stage downscaling procedure. First, tropical cyclone genesis is simulated globally using HiRAM. Each storm is then downscaled into the GFDL hurricane model, with horizontal grid spacing near the storm of 6 km, including ocean coupling (e.g., “cold wake” generation). Simulations are performed using observed sea surface temperatures (SSTs) (1980–2008) for a “control run” with 20 repeating seasonal cycles and for a late-twenty-first-century projection using an altered SST seasonal cycle obtained from a phase 5 of CMIP (CMIP5)/representative concentration pathway 4.5 (RCP4.5) multimodel ensemble. In general agreement with most previous studies, projections with this framework indicate fewer tropical cyclones globally in a warmer late-twenty-first-century climate, but also an increase in average cyclone intensity, precipitation rates, and the number and occurrence days of very intense category 4 and 5 storms. While these changes are apparent in the globally averaged tropical cyclone statistics, they are not necessarily present in each individual basin. The interbasin variation of changes in most of the tropical cyclone metrics examined is directly correlated to the variation in magnitude of SST increases between the basins. Finally, the framework is shown to be capable of reproducing both the observed global distribution of outer storm size—albeit with a slight high bias—and its interbasin variability. Projected median size is found to remain nearly constant globally, with increases in most basins offset by decreases in the northwest Pacific.

Full access
Liang Wu, Chia Chou, Cheng-Ta Chen, Ronghui Huang, Thomas R. Knutson, Joseph J. Sirutis, Stephen T. Garner, Christopher Kerr, Chia-Jung Lee, and Ya-Chien Feng

Abstract

A high-resolution regional atmospheric model is used to simulate present-day western North Pacific (WNP) tropical cyclone (TC) activity and to investigate the projected changes for the late twenty-first century. Compared to observations, the model can realistically simulate many basic features of the WNP TC activity climatology, such as the TC genesis location, track, and lifetime. A number of spatial and temporal features of observed TC interannual variability are captured, although observed variations in basinwide TC number are not. A relatively well-simulated feature is the contrast of years when the Asian summer monsoon trough extends eastward (retreats westward), more (fewer) TCs form within the southeastern quadrant of the WNP, and the corresponding TC activity is above (below) normal over most parts of the WNP east of 125°E. Future projections with the Coupled Model Intercomparison Project phase 3 (CMIP3) A1B scenario show a weak tendency for decreases in the number of WNP TCs, and for increases in the more intense TCs; these simulated changes are significant at the 80% level. The present-day simulation of intensity is limited to storms of intensity less than about 55 m s−1. There is also a weak (80% significance level) tendency for projected WNP TC activity to shift poleward under global warming. A regional-scale feature is a projected increase of the TC activity north of Taiwan, which would imply an increase in TCs making landfall in north China, the Korean Peninsula, and parts of Japan. However, given the weak statistical significance found for the simulated changes, an assessment of the robustness of such regional-scale projections will require further study.

Full access
Thomas R. Knutson, Joseph J. Sirutis, Gabriel A. Vecchi, Stephen Garner, Ming Zhao, Hyeong-Seog Kim, Morris Bender, Robert E. Tuleya, Isaac M. Held, and Gabriele Villarini

Abstract

Twenty-first-century projections of Atlantic climate change are downscaled to explore the robustness of potential changes in hurricane activity. Multimodel ensembles using the phase 3 of the Coupled Model Intercomparison Project (CMIP3)/Special Report on Emissions Scenarios A1B (SRES A1B; late-twenty-first century) and phase 5 of the Coupled Model Intercomparison Project (CMIP5)/representative concentration pathway 4.5 (RCP4.5; early- and late-twenty-first century) scenarios are examined. Ten individual CMIP3 models are downscaled to assess the spread of results among the CMIP3 (but not the CMIP5) models. Downscaling simulations are compared for 18-km grid regional and 50-km grid global models. Storm cases from the regional model are further downscaled into the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model (9-km inner grid spacing, with ocean coupling) to simulate intense hurricanes at a finer resolution.

A significant reduction in tropical storm frequency is projected for the CMIP3 (−27%), CMIP5-early (−20%) and CMIP5-late (−23%) ensembles and for 5 of the 10 individual CMIP3 models. Lifetime maximum hurricane intensity increases significantly in the high-resolution experiments—by 4%–6% for CMIP3 and CMIP5 ensembles. A significant increase (+87%) in the frequency of very intense (categories 4 and 5) hurricanes (winds ≥ 59 m s−1) is projected using CMIP3, but smaller, only marginally significant increases are projected (+45% and +39%) for the CMIP5-early and CMIP5-late scenarios. Hurricane rainfall rates increase robustly for the CMIP3 and CMIP5 scenarios. For the late-twenty-first century, this increase amounts to +20% to +30% in the model hurricane’s inner core, with a smaller increase (~10%) for averaging radii of 200 km or larger. The fractional increase in precipitation at large radii (200–400 km) approximates that expected from environmental water vapor content scaling, while increases for the inner core exceed this level.

Full access
Leo J. Donner, Bruce L. Wyman, Richard S. Hemler, Larry W. Horowitz, Yi Ming, Ming Zhao, Jean-Christophe Golaz, Paul Ginoux, S.-J. Lin, M. Daniel Schwarzkopf, John Austin, Ghassan Alaka, William F. Cooke, Thomas L. Delworth, Stuart M. Freidenreich, C. T. Gordon, Stephen M. Griffies, Isaac M. Held, William J. Hurlin, Stephen A. Klein, Thomas R. Knutson, Amy R. Langenhorst, Hyun-Chul Lee, Yanluan Lin, Brian I. Magi, Sergey L. Malyshev, P. C. D. Milly, Vaishali Naik, Mary J. Nath, Robert Pincus, Jeffrey J. Ploshay, V. Ramaswamy, Charles J. Seman, Elena Shevliakova, Joseph J. Sirutis, William F. Stern, Ronald J. Stouffer, R. John Wilson, Michael Winton, Andrew T. Wittenberg, and Fanrong Zeng

Abstract

The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.

Full access
Thomas L. Delworth, Anthony J. Broccoli, Anthony Rosati, Ronald J. Stouffer, V. Balaji, John A. Beesley, William F. Cooke, Keith W. Dixon, John Dunne, K. A. Dunne, Jeffrey W. Durachta, Kirsten L. Findell, Paul Ginoux, Anand Gnanadesikan, C. T. Gordon, Stephen M. Griffies, Rich Gudgel, Matthew J. Harrison, Isaac M. Held, Richard S. Hemler, Larry W. Horowitz, Stephen A. Klein, Thomas R. Knutson, Paul J. Kushner, Amy R. Langenhorst, Hyun-Chul Lee, Shian-Jiann Lin, Jian Lu, Sergey L. Malyshev, P. C. D. Milly, V. Ramaswamy, Joellen Russell, M. Daniel Schwarzkopf, Elena Shevliakova, Joseph J. Sirutis, Michael J. Spelman, William F. Stern, Michael Winton, Andrew T. Wittenberg, Bruce Wyman, Fanrong Zeng, and Rong Zhang

Abstract

The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved.

Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments.

The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic.

Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).

Full access