Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Joseph P. Pinto x
  • Refine by Access: All Content x
Clear All Modify Search
Wei-Chyung Wang, Joseph P. Pinto, and Yuk Ling Yung

Abstract

Using a one-dimensional radiative-convective model, we perform a sensitivity study of the effect of ozone depletion in the stratosphere on the surface temperature. There could be a cooling of the surface temperature by ∼0.2 K due to chlorofluoromethane-induced ozone depletion at steady state (assuming 1973 release rates). This cooling reduces significantly the greenhouse effect due to the presence of chlorofluoromethanes. Carbon tetrafluoride has a strong ν3 band at 7.8 μm, and the atmospheric greenhouse effect is shown to be 0.07 and 0.12 K (ppbv)−1 with and without taking into account overlap with CH4 and N2O bands. At concentration higher than l ppbv, absorption by the ν3 band starts to saturate and the greenhouse effect becomes less efficient.

Full access
Francis S. Binkowski, Saravanan Arunachalam, Zachariah Adelman, and Joseph P. Pinto

Abstract

A prototype online photolysis module has been developed for the Community Multiscale Air Quality (CMAQ) modeling system. The module calculates actinic fluxes and photolysis rates (j values) at every vertical level in each of seven wavelength intervals from 291 to 850 nm, as well as the total surface irradiance and aerosol optical depth within each interval. The module incorporates updated opacity at each time step, based on changes in local ozone, nitrogen dioxide, and particle concentrations. The module is computationally efficient and requires less than 5% more central processing unit time than using the existing CMAQ “lookup” table method for calculating j values. The main focus of the work presented here is to describe the new online module as well as to highlight the differences between the effective cross sections from the lookup-table method currently being used and the updated effective cross sections from the new online approach. Comparisons of the vertical profiles for the photolysis rates for nitrogen dioxide (NO2) and ozone (O3) from the new online module with those using the effective cross sections from a standard CMAQ simulation show increases in the rates of both NO2 and O3 photolysis.

Full access