Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Joseph P. Zagrodnik x
  • All content x
Clear All Modify Search
Joseph P. Zagrodnik and Haiyan Jiang

Abstract

Rainfall estimates from versions 6 (V6) and 7 (V7) of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) 2A25 and Microwave Imager (TMI) 2A12 algorithms are compared relative to the Next Generation Weather Radar (NEXRAD) Multisensor Precipitation Estimate stage-IV hourly rainfall product. The dataset consists of 252 TRMM overpasses of tropical cyclones from 2002 to 2010 within a 230-km range of southeastern U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) sites. All rainfall estimates are averaged to a uniform 1/7° square grid. The grid boxes are also divided by their TMI surface designation (land, ocean, or coast). A detailed statistical analysis is undertaken to determine how changes to the TRMM rainfall algorithms in the latest version (V7) are influencing the rainfall retrievals relative to ground reference data. Version 7 of the PR 2A25 is the best-performing algorithm over all three surface types. Over ocean, TMI 2A12 V7 is improved relative to V6 at high rain rates. At low rain rates, the new ocean TMI V7 probability-of-rain parameter creates ambiguity in differentiating light rain (≤0.5 mm h−1) and nonraining areas. Over land, TMI V7 underestimates stage IV more than V6 does at a wide range of rain rates, resulting in an increased negative bias. Both versions of the TMI coastal algorithm are also negatively biased at both moderate and heavy rain rates. Some of the TMI biases can be explained by uncertain relationships between rain rate and 85-GHz ice scattering.

Full access
Joseph P. Zagrodnik and Haiyan Jiang

Abstract

Tropical cyclone (TC) rainfall, convection, and latent heating distributions are compiled from 14 years of Tropical Rainfall Measuring Mission (TRMM) precipitation radar overpasses. The dataset of 818 Northern Hemisphere tropical storms through category 2 hurricanes is divided by future 24-h intensity change and exclusively includes storms with at least moderately favorable environmental conditions. The rapidly intensifying (RI) category is further subdivided into an initial [RI (initial)] and continuing [RI (continuing)] category based on whether the storm is near the beginning of an RI event or has already been undergoing RI for 12 or more hours prior to the TRMM overpass. TCs in each intensity change category are combined into composite diagrams orientated relative to the environmental vertical wind shear direction. Rainfall frequency, defined as the shear-relative occurrence of PR near-surface reflectivity >20 dBZ, is most strongly correlated with future intensity change. The rainfall frequency is also higher in RI (continuing) TCs than RI (initial). Moderate-to-deep convection and latent heating only increase significantly after RI is underway for at least 12 h in the innermost 50 km relative to the TC center. The additional precipitation in rapidly intensifying TCs is composed primarily of a mixture of weak convective and stratiform rain, especially in the upshear quadrants. The rainfall frequency and latent heating distributions are more symmetric near the onset of RI and continue to become more symmetric as RI continues and the rainfall coverage expands upshear. The relationship between rainfall distributions and future TC intensity highlights the potential of 37-GHz satellite imagery to improve real-time intensity forecasting.

Full access
Joseph P. Zagrodnik, Lynn McMurdie, and Robert Conrick

Abstract

High-resolution numerical model simulations of six different cases during the 2015/16 Olympic Mountains Experiment (OLYMPEX) are used to examine dynamic and microphysical precipitation processes on both the full barrier-scale and smaller sub-barrier-scale ridges and valleys. The degree to which stratiform precipitation within midlatitude cyclones is modified over the coastal Olympic Mountains range was found to be strongly dependent on the synoptic environment within a cyclone’s prefrontal and warm sectors. In prefrontal sectors, barrier-scale ascent over stably stratified flow resulted in enhanced ice production aloft at the coast and generally upstream of higher terrain. At low levels, stable flow orientated transverse to sub-barrier-scale windward ridges generated small-scale mountain waves, which failed to produce enough cloud water to appreciably enhance precipitation on the scale of the windward ridges. In moist-neutral warm sectors, the upstream side of the barrier exhibited broad ascent oriented along the windward ridges with lesser regions of adjacent downward motion. Significant quantities of cloud water were produced over coastal foothills with further production of cloud water on the lower-windward slopes. Ice production above the melting layer occurred directly over the barrier where the ice particles were further advected downstream by cross-barrier winds and spilled over into the lee. The coastal foothills were found to be essential for the production and maintenance of cloud water upstream of the primary topographic barrier, allowing additional time for hydrometeors to grow to precipitation size by autoconversion and collection before falling out on the lower-windward slopes.

Open access
Robert Conrick, Joseph P. Zagrodnik, and Clifford F. Mass

Abstract

Radar retrievals of drop size distribution (DSD) parameters are developed and evaluated over the mountainous Olympic Peninsula of Washington State. The observations used to develop retrievals were collected during the 2015/16 Olympic Mountain Experiment (OLYMPEX) and included the NASA S-band dual-polarimetric (NPOL) radar and a collection of second-generation Particle Size and Velocity (PARSIVEL2) disdrometers over the windward slopes of the barrier. Nonlinear and random forest regressions are applied to the PARSIVEL2 data to develop retrievals for median volume diameter, liquid water content, and rain rate. Improvement in DSD retrieval accuracy, defined by the mean error of the retrieval relative to PARSIVEL2 observations, was achieved when using the random forest model when compared with nonlinear regression. Evaluation of disdrometer observations and the retrievals from NPOL indicate that the radar retrievals can accurately reproduce observed DSDs in this region, including the common wintertime regime of small but numerous raindrops that is important there. NPOL retrievals during the OLYMPEX period are further evaluated using two-dimensional video disdrometers (2DVD) and vertically pointing Micro Rain Radars. Results indicate that radar retrievals using random forests may be skillful in capturing DSD characteristics in the lowest portions of the atmosphere.

Free access
Clifford F. Mass, Robert Conrick, Nicholas Weber, and Joseph P. Zagrodnik

Abstract

On 27 January 2018, a highly localized, strong wind event occurred along the north shore of Lake Quinault, Washington. The resulting loss of large old-growth trees in a roughly 0.5-km2 region led to blocked roads and power outages. Nearby surface stations did not record anomalous winds, and no tree damage was reported in the surrounding region. Based on public accounts and a nearby seismometer, it appears that the strong winds lasted less than 10 min. Surface and aerial damage surveys showed that the trees fell from a different direction (northerly) than the synoptic or mesoscale f low (southwesterly to southeasterly). Based on high-resolution Weather Research and Forecasting (WRF) Model simulations, it appears that the damaging northerly winds were the result of a strong atmospheric rotor produced by a high-amplitude mountain wave. A simulation with 148-m grid spacing produced a rotor at the same time and location as the treefalls. Synoptic analysis and the high-resolution simulation showed that moderately strong southeasterly flow and a stable layer associated with the approaching occluded front interacted with a ∼750-m-high upstream mountain ridge to produce the mountain wave and associated rotor circulation. The combination of an inversion and strong shear at and above the upstream ridge were outliers in a climatology of soundings from the nearby Quillayute rawinsonde site, suggesting that such intense mountain-wave rotors are unusual in this valley.

Open access
Joseph P. Zagrodnik, Lynn A. McMurdie, and Robert A. Houze Jr.

Abstract

The Olympic Mountains Experiment (OLYMPEX) documented precipitation and drop size distributions (DSDs) in landfalling midlatitude cyclones with gauges and disdrometers located at various distances from the coast and at different elevations on the windward side of the mountain range. Statistics of the drop size and gauge data for the season and case study analysis of a high-rainfall-producing storm of the atmospheric river type show that DSDs during stratiform raining periods exhibit considerable variability in regions of complex terrain. Seasonal statistics show that different relative proportions of drop sizes are present, depending on synoptic and mesoscale conditions, which vary within a single storm. The most frequent DSD regime contains modest concentrations of both small and large drops with synoptic factors near their climatological norms and moderate precipitation enhancement on the lower windward slopes. The heaviest rains are the most strongly enhanced on the lower slope and have DSDs marked by large concentrations of small to medium drops and varying concentrations of large drops. During the heavy-rain period of the case examined here, the low-level flow was onshore and entirely up terrain, the melting level was ~2.5 km, and stability moist neutral so that large amounts of small raindrops were produced. At the same time, melting ice particles produced at upper levels contributed varying amounts of large drops to the DSD, depending on the subsynoptic variability of the storm structure. When the low-level flow is directed downslope and offshore, small-drop production at low altitudes is reduced or eliminated.

Open access
Joseph P. Zagrodnik, Lynn A. McMurdie, Robert A. Houze Jr., and Simone Tanelli

Abstract

As midlatitude cyclones pass over a coastal mountain range, the processes producing their clouds and precipitation are modified, leading to considerable spatial variability in precipitation amount and composition. Statistical diagrams of airborne precipitation radar transects, surface precipitation measurements, and particle size distributions are examined from nine cases observed during the Olympic Mountains Experiment (OLYMPEX). Although the pattern of windward enhancement and leeside diminishment of precipitation was omnipresent, the degree of modulation was largely controlled by the synoptic environment associated with the prefrontal, warm, and postfrontal sectors of midlatitude cyclones. Prefrontal sectors contained homogeneous stratiform precipitation with a slightly enhanced ice layer on the windward slopes and rapid diminishment to a near-complete rain shadow in the lee. Warm sectors contained deep, intense enhancement over both the windward slopes and high terrain and less prominent rain shadows owing to downstream spillover of ice particles generated over terrain. Surface particle size distributions in the warm sector contained a broad spectrum of sizes and concentrations of raindrops on the lower windward side where high precipitation rates were achieved from varying degrees of both liquid and ice precipitation-generating processes. Spillover precipitation was rather homogeneous in nature and lacked the undulations in particle size and concentration that occurred at the windward sites. Postfrontal precipitation transitioned from isolated convective cells over ocean to a shallow, mixed convective–stratiform composition with broader coverage and greater precipitation rates over the sloping terrain.

Open access
Hannah C. Barnes, Joseph P. Zagrodnik, Lynn A. McMurdie, Angela K. Rowe, and Robert A. Houze Jr.

Abstract

This study examines Kelvin–Helmholtz (KH) waves observed by dual-polarization radar in several precipitating midlatitude cyclones during the Olympic Mountains Experiment (OLYMPEX) field campaign along the windward side of the Olympic Mountains in Washington State and in a strong stationary frontal zone in Iowa during the Iowa Flood Studies (IFloodS) field campaign. While KH waves develop regardless of the presence or absence of mountainous terrain, this study indicates that the large-scale flow can be modified when encountering a mountain range in such a way as to promote development of KH waves on the windward side and to alter their physical structure (i.e., orientation and amplitude). OLYMPEX sampled numerous instances of KH waves in precipitating clouds, and this study examines their effects on microphysical processes above, near, and below the melting layer. The dual-polarization radar data indicate that KH waves above the melting layer promote aggregation. KH waves centered in the melting layer produce the most notable signatures in dual-polarization variables, with the patterns suggesting that the KH waves promote both riming and aggregation. Both above and near the melting layer ice particles show no preferred orientation likely because of tumbling in turbulent air motions. KH waves below the melting layer facilitate the generation of large drops via coalescence and/or vapor deposition, increasing mean drop size and rain rate by only slight amounts in the OLYMPEX storms.

Open access
Robert A. Houze Jr., Lynn A. McMurdie, Walter A. Petersen, Mathew R. Schwaller, William Baccus, Jessica D. Lundquist, Clifford F. Mass, Bart Nijssen, Steven A. Rutledge, David R. Hudak, Simone Tanelli, Gerald G. Mace, Michael R. Poellot, Dennis P. Lettenmaier, Joseph P. Zagrodnik, Angela K. Rowe, Jennifer C. DeHart, Luke E. Madaus, Hannah C. Barnes, and V. Chandrasekar

Abstract

The Olympic Mountains Experiment (OLYMPEX) took place during the 2015/16 fall–winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S.–Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching “atmospheric river” status, warm- and cold-frontal systems, and postfrontal convection.

Open access