Search Results

You are looking at 1 - 10 of 29 items for

  • Author or Editor: Joseph Santanello x
  • Refine by Access: All Content x
Clear All Modify Search
Joseph A. Santanello Jr. and Toby N. Carlson

Abstract

Rapid soil-surface drying, which is called “decoupling,” accompanied by an increase in near-surface air temperature and sensible heat flux, is typically confined to the top 1–2 cm of the soil, while the deeper layers remain relatively moist. Because decoupling depends also on a precise knowledge of fractional vegetation cover, soil properties, and soil water content, an accurate knowledge of these parameters is essential for making good predictions of temperature and humidity. Accordingly, some simulations centered on the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed Southern Great Plains site in Kansas and Oklahoma using a high-resolution substrate layer (Simulator for Hydrology and Energy Exchange at the Land Surface), the Fifth-Generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, and derived and default values for soil water content and fractional vegetation cover are presented. In so doing, the following points are made: 1) decoupling occurs only within certain threshold ranges of soil water content that are closely related to the soil type and 2) a knowledge of fractional vegetation cover derived from concurrent observations is necessary for capturing the spatial variation in rapid soil drying in forecast models.

Full access
Joshua K. Roundy and Joseph A. Santanello

Abstract

Feedbacks between the land and the atmosphere can play an important role in the water cycle, and a number of studies have quantified land–atmosphere (LA) interactions and feedbacks through observations and prediction models. Because of the complex nature of LA interactions, the observed variables are not always available at the needed temporal and spatial scales. This work derives the Coupling Drought Index (CDI) solely from satellite data and evaluates the input variables and the resultant CDI against in situ data and reanalysis products. NASA’s Aqua satellite and retrievals of soil moisture and lower-tropospheric temperature and humidity properties are used as input. Overall, the Aqua-based CDI and its inputs perform well at a point, spatially, and in time (trends) compared to in situ and reanalysis products. In addition, this work represents the first time that in situ observations were utilized for the coupling classification and CDI. The combination of in situ and satellite remote sensing CDI is unique and provides an observational tool for evaluating models at local and large scales. Overall, results indicate that there is sufficient information in the signal from simultaneous measurements of the land and atmosphere from satellite remote sensing to provide useful information for applications of drought monitoring and coupling metrics.

Full access
Joseph A. Santanello Jr. and Mark A. Friedl

Abstract

Diurnal variation in soil heat flux is a key constraint on the amount of energy available for sensible and latent heating of the lower troposphere. Many studies have demonstrated that soil heat flux G is strongly correlated with net radiation R n. However, methods to parameterize G based on this relationship typically do not account for the dependency of G on soil properties and ignore asymmetry in the diurnal variation of G relative to R n. In this paper, the diurnal behavior of G as a function of R n is examined for sparse cover and bare soil conditions, focusing on patterns of diurnal variation as well as on the effects of soil moisture and soil type. To this end, information from field data is combined with simulations from a multilayer, diffusion-based soil model over a range of soil conditions and vegetation densities. The results show that a relatively simple function can be used to capture the first-order diurnal covariation between G and R n. Within this framework, soil moisture exerts an important control on this relationship. When soils make the transition from stage-1 (atmosphere limited) to stage-2 (soil limited) evaporation, the ratio of G to R n tends to increase. Further, soils in stage-2 evaporation exhibit positive G later in the day relative to moist soils. Data from several field experiments show that the amplitude of diurnal surface temperature can be used to predict the magnitude and behavior of G/R n by integrating the effects of soil type and moisture. Based on these results, a method to estimate G/R n is proposed that provides a robust representation of G/R n on hourly timescales for varying soil conditions. This method provides improvement over previous semiempirical treatments for G for which diurnal energy balance closure is required.

Full access
Rezaul Mahmood, Joseph Santanello, and Xiaoyang Zhang
Full access
Joseph A. Santanello Jr., Patricia Lawston, Sujay Kumar, and Eli Dennis

Abstract

The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated impacts of land surface states on ambient weather from diurnal to seasonal scales. However, soil moisture initialization approaches in coupled models remain quite diverse in terms of their complexity and observational roots, while assessment using bulk forecast statistics can be simplistic and misleading. In this study, a suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S. Southern Great Plains using NASA’s Land Information System (LIS) and NASA Unified WRF (NU-WRF) modeling systems. This includes a wide range of currently used initialization approaches, including soil moisture derived from “off the shelf” products such as atmospheric models and land data assimilation systems, high-resolution land surface model spinups, and satellite-based soil moisture products from SMAP. Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and temporal dynamics when compared against high-resolution land surface model and in situ soil moisture estimates. Case studies are analyzed using the local land–atmosphere coupling (LoCo) framework that relies on integrated assessment of soil moisture, surface flux, boundary layer, and ambient weather, with results highlighting the critical role of inherent model background biases. In addition, simultaneous assessment of land versus atmospheric initial conditions in an integrated, process-level fashion can help address the question of whether improvements in traditional NWP verification statistics are achieved for the right reasons.

Full access
Ahmed B. Tawfik, Paul A. Dirmeyer, and Joseph A. Santanello Jr.

Abstract

This is Part II of a two-part study introducing the heated condensation framework (HCF), which quantifies the potential convective state of the atmosphere in terms of land–atmosphere interactions. Part I introduced the full suite of HCF variables and applied them to case studies with observations and models over a single location in the southern Great Plains. It was shown in Part I that the HCF was capable of identifying locally initiated convection and quantifying energetically favorable pathways for initiation. Here, the HCF is applied to the entire conterminous United States and the climatology of convective initiation (CI) in relation to local land–atmosphere coupling (LoCo) is explored for 34 summers (June–August) using the North American Regional Reanalysis (NARR) and observations. NARR is found to be capable of capturing the convective threshold (buoyant mixing potential temperature θ BM) and energy advantage transition (energy advantage potential temperature θ adv) for most of the United States. However, there are compensating biases in the components of moisture q mix and temperature q*, resulting in low θ BM biases for the wrong reason. The HCF has been used to show that local CI occurred over the Rocky Mountains and the southern Great Plains 35%–65% of the time. Finally, the LoCo process chain has been recast in light of the HCF. Both positive and negative soil moisture–convective feedbacks are possible, with negative feedbacks producing a stronger response in CI likelihood under weak convective inhibition. Positive feedbacks are present but weaker.

Full access
Joseph A. Santanello Jr., Mark A. Friedl, and Michael B. Ek

Abstract

The convective planetary boundary layer (PBL) integrates surface fluxes and conditions over regional and diurnal scales. As a result, the structure and evolution of the PBL contains information directly related to land surface states. To examine the nature and magnitude of land–atmosphere coupling and the interactions and feedbacks controlling PBL development, the authors used a large sample of radiosonde observations collected at the southern Atmospheric Research Measurement Program–Great Plains Cloud and Radiation Testbed (ARM-CART) site in association with simulations of mixed-layer growth from a single-column PBL/land surface model. The model accurately predicts PBL evolution and realistically simulates thermodynamics associated with two key controls on PBL growth: atmospheric stability and soil moisture. The information content of these variables and their influence on PBL height and screen-level temperature can be characterized using statistical methods to describe PBL–land surface coupling over a wide range of conditions. Results also show that the first-order effects of land–atmosphere coupling are manifested in the control of soil moisture and stability on atmospheric demand for evapotranspiration and on the surface energy balance. Two principal land–atmosphere feedback regimes observed during soil moisture drydown periods are identified that complicate direct relationships between PBL and land surface properties, and, as a result, limit the accuracy of uncoupled land surface and traditional PBL growth models. In particular, treatments for entrainment and the role of the residual mixed layer are critical to quantifying diurnal land–atmosphere interactions.

Full access
Joseph A. Santanello Jr., Joshua Roundy, and Paul A. Dirmeyer

Abstract

The coupling of the land with the planetary boundary layer (PBL) on diurnal time scales is critical to regulating the strength of the connection between soil moisture and precipitation. To improve understanding of land–atmosphere (L–A) interactions, recent studies have focused on the development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, the authors apply a suite of local land–atmosphere coupling (LoCo) metrics to modern reanalysis (RA) products and observations during a 17-yr period over the U.S. southern Great Plains. Specifically, a range of diagnostics exploring the links between soil moisture, evaporation, PBL height, temperature, humidity, and precipitation is applied to the summertime monthly mean diurnal cycles of the North American Regional Reanalysis (NARR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR). Results show that CFSR is the driest and MERRA the wettest of the three RAs in terms of overall surface–PBL coupling. When compared against observations, CFSR has a significant dry bias that impacts all components of the land–PBL system. CFSR and NARR are more similar in terms of PBL dynamics and response to dry and wet extremes, while MERRA is more constrained in terms of evaporation and PBL variability. Each RA has a unique land–PBL coupling that has implications for downstream impacts on the diurnal cycle of PBL evolution, clouds, convection, and precipitation as well as representation of extremes and drought. As a result, caution should be used when treating RAs as truth in terms of their water and energy cycle processes.

Full access
Ahmed B. Tawfik, Paul A. Dirmeyer, and Joseph A. Santanello Jr.

Abstract

This study extends the heated condensation framework (HCF) presented in Tawfik and Dirmeyer to include variables for describing the convective background state of the atmosphere used to quantify the contribution of the atmosphere to convective initiation within the context of land–atmosphere coupling. In particular, the ability for the full suite of HCF variables to 1) quantify the amount of latent and sensible heat energy necessary for convective initiation, 2) identify the transition from moistening advantage to boundary layer growth advantage, 3) identify locally originating convection, and 4) compare models and observations, directly highlighting biases in the convective state, is demonstrated. These capabilities are illustrated for a clear-sky and convectively active day over the Atmospheric Radiation Measurement Program Southern Great Plains central station using observations, the Rapid Update Cycle (RUC) operational model, and the North American Regional Reanalysis (NARR). The clear-sky day had a higher and unattainable convective threshold, making convective initiation unlikely. The convectively active day had a lower threshold that was attained by midafternoon, reflecting local convective triggering. Compared to observations, RUC tended to have the most difficulty representing the convective state and captured the threshold for the clear-sky case only because of compensating biases in the moisture and temperature profiles. Despite capturing the observed moisture profile very well, a stronger surface inversion in NARR returned overestimates in the convective threshold. The companion paper applies the HCF variables introduced here across the continental United States to examine the climatological behavior of convective initiation and local land–atmosphere coupling.

Full access
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Sujay V. Kumar

Abstract

Accurately representing land-atmosphere (L-A) interactions and coupling in NWP systems remains a challenge. New observations, incorporated into models via assimilation or calibration, hold the promise of improved forecast skill, but erroneous model coupling can hinder the benefits of such activities. To better understand model representation of coupled interactions and feedbacks, this study demonstrates a novel framework for coupled calibration of the Single Column Model (SCM) capability of the NASA Unified Weather Research and Forecasting (NU-WRF) system coupled to NASA’s Land Information System (LIS). The local land-atmosphere coupling (LoCo) process chain paradigm is used to assess the processes and connections revealed by calibration experiments. Two summer case studies in the U. S. Southern Great Plains are simulated in which LSM parameters are calibrated to diurnal observations of LoCo process chain components including 2-meter temperature, 2-meter humidity, surface fluxes (Bowen ratio), and PBL height. Results show a wide range of soil moisture and hydraulic parameter solutions depending on which L-A variable (i.e. observation) is used for calibration, highlighting that improvement in either SHP or ISM when not in tandem with the other can provide undesirable results. Overall, this work demonstrates that a process chain calibration approach can be used to assess L-A connections, feedbacks, strengths, and deficiencies in coupled models, as well as quantify the potential impact of new sources of observations of land-PBL variables on coupled prediction.

Restricted access