Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Joyce E. Meyerson x
- Refine by Access: All Content x
Abstract
During El Niño, there are substantial tropospheric temperature anomalies across the entire tropical belt associated with the warming of sea surface temperatures (SSTs) in the central and eastern Pacific. The quasi-equilibrium tropical circulation model (QTCM) is used to investigate the mechanisms for tropical tropospheric temperature response to SST forcing. In both observations and model simulations, the tropical averaged tropospheric temperature anomaly 〈T̂′〉 is approximately linear with the tropical mean SST anomaly 〈
Abstract
During El Niño, there are substantial tropospheric temperature anomalies across the entire tropical belt associated with the warming of sea surface temperatures (SSTs) in the central and eastern Pacific. The quasi-equilibrium tropical circulation model (QTCM) is used to investigate the mechanisms for tropical tropospheric temperature response to SST forcing. In both observations and model simulations, the tropical averaged tropospheric temperature anomaly 〈T̂′〉 is approximately linear with the tropical mean SST anomaly 〈
Abstract
The mechanism and sensitivity of the lagged response of tropical tropospheric temperature to El Niño–Southern Oscillation (ENSO) SST forcing are examined using the Quasi-Equilibrium Tropical Circulation Model (QTCM) coupled to a slab mixed layer ocean model, along with a simple analytical model. It is found that the lag and amplitude of tropospheric temperature response depend on mixed layer depth (MLD), ENSO SST forcing period, areal fraction of the mixed layer ocean, and the strength of Tropics to midlatitude transports. The phase lag is not a monotonic function of mixed layer depth. It maximizes at moderate MLD and, thus, is not very sensitive to MLD in the realistic range. The phase lag asymptotes to values determined by free-atmospheric time scales, between 1 and 2 months, for small or large values of MLD. The amplitude of the tropospheric temperature response decreases with increasing MLD. The phase lag and amplitude of tropospheric temperature both increase as a specified ENSO SST forcing period increases and they appear to be rather insensitive to the seasonal cycle of SST. On the other hand, the phase lag and amplitude of mixed layer ocean SST change monotonically with MLD and ENSO forcing period, with a deeper mixed layer producing longer lag and smaller amplitude of SST anomalies. Longer ENSO SST forcing periods correspond to longer lag and larger amplitude of mixed layer ocean SST anomalies. While the ENSO region convective heating (precipitation) anomalies are closely tied to SST anomalies, the tropical mean precipitation seems best viewed as a complex by-product of the response rather than as a driver. One useful parameter determining the lag of tropospheric temperature to ENSO SST is the freedecay time scale of the coupled system. This parameter combines the effects of surface flux exchanges, heat loss at the top of the atmosphere and from the Tropics to midlatitudes, and finite ocean heat capacity. It is indicative of the extent to which the lagged response of tropical tropospheric temperature to ENSO SST is a coupled phenomenon. Overall, the contribution of coupling to SST outside the ENSO region substantially increases the amplitude and lag of the tropospheric temperature response to ENSO.
Abstract
The mechanism and sensitivity of the lagged response of tropical tropospheric temperature to El Niño–Southern Oscillation (ENSO) SST forcing are examined using the Quasi-Equilibrium Tropical Circulation Model (QTCM) coupled to a slab mixed layer ocean model, along with a simple analytical model. It is found that the lag and amplitude of tropospheric temperature response depend on mixed layer depth (MLD), ENSO SST forcing period, areal fraction of the mixed layer ocean, and the strength of Tropics to midlatitude transports. The phase lag is not a monotonic function of mixed layer depth. It maximizes at moderate MLD and, thus, is not very sensitive to MLD in the realistic range. The phase lag asymptotes to values determined by free-atmospheric time scales, between 1 and 2 months, for small or large values of MLD. The amplitude of the tropospheric temperature response decreases with increasing MLD. The phase lag and amplitude of tropospheric temperature both increase as a specified ENSO SST forcing period increases and they appear to be rather insensitive to the seasonal cycle of SST. On the other hand, the phase lag and amplitude of mixed layer ocean SST change monotonically with MLD and ENSO forcing period, with a deeper mixed layer producing longer lag and smaller amplitude of SST anomalies. Longer ENSO SST forcing periods correspond to longer lag and larger amplitude of mixed layer ocean SST anomalies. While the ENSO region convective heating (precipitation) anomalies are closely tied to SST anomalies, the tropical mean precipitation seems best viewed as a complex by-product of the response rather than as a driver. One useful parameter determining the lag of tropospheric temperature to ENSO SST is the freedecay time scale of the coupled system. This parameter combines the effects of surface flux exchanges, heat loss at the top of the atmosphere and from the Tropics to midlatitudes, and finite ocean heat capacity. It is indicative of the extent to which the lagged response of tropical tropospheric temperature to ENSO SST is a coupled phenomenon. Overall, the contribution of coupling to SST outside the ENSO region substantially increases the amplitude and lag of the tropospheric temperature response to ENSO.
Abstract
Projections of possible precipitation change in California under global warming have been subject to considerable uncertainty because California lies between the region anticipated to undergo increases in precipitation at mid-to-high latitudes and regions of anticipated decrease in the subtropics. Evaluation of the large-scale model experiments for phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests a greater degree of agreement on the sign of the winter (December–February) precipitation change than in the previous such intercomparison, indicating a greater portion of California falling within the increased precipitation zone. While the resolution of global models should not be relied on for accurate depiction of topographic rainfall distribution within California, the precipitation changes depend substantially on large-scale shifts in the storm tracks arriving at the coast. Significant precipitation increases in the region arriving at the California coast are associated with an eastward extension of the region of strong Pacific jet stream, which appears to be a robust feature of the large-scale simulated changes. This suggests that effects of this jet extension in steering storm tracks toward the California coast constitute an important factor that should be assessed for impacts on incoming storm properties for high-resolution regional model assessments.
Abstract
Projections of possible precipitation change in California under global warming have been subject to considerable uncertainty because California lies between the region anticipated to undergo increases in precipitation at mid-to-high latitudes and regions of anticipated decrease in the subtropics. Evaluation of the large-scale model experiments for phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests a greater degree of agreement on the sign of the winter (December–February) precipitation change than in the previous such intercomparison, indicating a greater portion of California falling within the increased precipitation zone. While the resolution of global models should not be relied on for accurate depiction of topographic rainfall distribution within California, the precipitation changes depend substantially on large-scale shifts in the storm tracks arriving at the coast. Significant precipitation increases in the region arriving at the California coast are associated with an eastward extension of the region of strong Pacific jet stream, which appears to be a robust feature of the large-scale simulated changes. This suggests that effects of this jet extension in steering storm tracks toward the California coast constitute an important factor that should be assessed for impacts on incoming storm properties for high-resolution regional model assessments.
Abstract
This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.
Abstract
This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.
Abstract
In part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, including CMIP5 model agreement on increased central California precipitation. The paper also highlights uncertainties and limitations based on current results as priorities for further research. Although many projected changes in North American climate are consistent across CMIP5 models, substantial intermodel disagreement exists in other aspects. Areas of disagreement include projections of changes in snow water equivalent on a regional basis, summer Arctic sea ice extent, the magnitude and sign of regional precipitation changes, extreme heat events across the northern United States, and Atlantic and east Pacific tropical cyclone activity.
Abstract
In part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, including CMIP5 model agreement on increased central California precipitation. The paper also highlights uncertainties and limitations based on current results as priorities for further research. Although many projected changes in North American climate are consistent across CMIP5 models, substantial intermodel disagreement exists in other aspects. Areas of disagreement include projections of changes in snow water equivalent on a regional basis, summer Arctic sea ice extent, the magnitude and sign of regional precipitation changes, extreme heat events across the northern United States, and Atlantic and east Pacific tropical cyclone activity.
Abstract
This is the first part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the historical simulations of continental and regional climatology with a focus on a core set of 17 models. The authors evaluate the models for a set of basic surface climate and hydrological variables and their extremes for the continent. This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool season western Atlantic cyclones, the North American monsoon, the U.S. Great Plains low-level jet, and Arctic sea ice. In general, the multimodel ensemble mean represents the observed spatial patterns of basic climate and hydrological variables but with large variability across models and regions in the magnitude and sign of errors. No single model stands out as being particularly better or worse across all analyses, although some models consistently outperform the others for certain variables across most regions and seasons and higher-resolution models tend to perform better for regional processes. The CMIP5 multimodel ensemble shows a slight improvement relative to CMIP3 models in representing basic climate variables, in terms of the mean and spread, although performance has decreased for some models. Improvements in CMIP5 model performance are noticeable for some regional climate processes analyzed, such as the timing of the North American monsoon. The results of this paper have implications for the robustness of future projections of climate and its associated impacts, which are examined in the third part of the paper.
Abstract
This is the first part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the historical simulations of continental and regional climatology with a focus on a core set of 17 models. The authors evaluate the models for a set of basic surface climate and hydrological variables and their extremes for the continent. This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool season western Atlantic cyclones, the North American monsoon, the U.S. Great Plains low-level jet, and Arctic sea ice. In general, the multimodel ensemble mean represents the observed spatial patterns of basic climate and hydrological variables but with large variability across models and regions in the magnitude and sign of errors. No single model stands out as being particularly better or worse across all analyses, although some models consistently outperform the others for certain variables across most regions and seasons and higher-resolution models tend to perform better for regional processes. The CMIP5 multimodel ensemble shows a slight improvement relative to CMIP3 models in representing basic climate variables, in terms of the mean and spread, although performance has decreased for some models. Improvements in CMIP5 model performance are noticeable for some regional climate processes analyzed, such as the timing of the North American monsoon. The results of this paper have implications for the robustness of future projections of climate and its associated impacts, which are examined in the third part of the paper.