Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Ju Chen x
  • All content x
Clear All Modify Search
Qingshan Chen and Ju Ming

Abstract

In this paper, the application of the multilevel Monte Carlo (MLMC) method to numerical simulations of turbulent flows with uncertain parameters is investigated. Several strategies for setting up the MLMC method are presented, and the advantages and disadvantages of each strategy are also discussed. A numerical experiment is carried out using an idealized model for the Antarctic Circumpolar Current (ACC) with uncertain, small-scale bottom topographic features. It is demonstrated that unlike the pointwise solutions, the averaged volume transports are correlated across grid resolutions, and the MLMC method can increase simulation efficiency without losing accuracy in uncertainty assessments.

Full access
Ke Huang, Weiqing Han, Dongxiao Wang, Weiqiang Wang, Qiang Xie, Ju Chen, and Gengxin Chen

Abstract

This paper investigates the features of the Equatorial Intermediate Current (EIC) in the Indian Ocean and its relationship with basin resonance at the semiannual time scale by using in situ observations, reanalysis output, and a continuously stratified linear ocean model (LOM). The observational results show that the EIC is characterized by prominent semiannual variations with velocity reversals and westward phase propagation and that it is strongly influenced by the pronounced second baroclinic mode structure but with identifiable vertical phase propagation. Similar behavior is found in the reanalysis data and LOM results. The simulation of wind-driven equatorial wave dynamics in the LOM reveals that the observed variability of the EIC can be largely explained by the equatorial basin resonance at the semiannual period, when the second baroclinic Rossby wave reflected from the eastern boundary intensifies the directly forced equatorial Kelvin and Rossby waves in the basin interior. The sum of the first 10 modes can reproduce the main features of the EIC. Among these modes, the resonant second baroclinic mode makes the largest contribution, which dominates the vertical structure, semiannual cycle, and westward phase propagation of the EIC. The other 9 modes, however, are also important, and the superposition of the first 10 modes produces downward energy propagation in the equatorial Indian Ocean.

Full access
Gengxin Chen, Weiqing Han, Yuanlong Li, Michael J. McPhaden, Ju Chen, Weiqiang Wang, and Dongxiao Wang

Abstract

This paper reports on strong, intraseasonal, upper-ocean meridional currents observed in the Indian Ocean between the Bay of Bengal (BOB) and the equator and elucidates the underlying physical processes responsible for them. In situ measurements from a subsurface mooring at 5°N, 90.5°E reveal strong intraseasonal variability of the meridional current with an amplitude of ~0.4 m s−1 and a typical period of 30–50 days in the upper 150 m, which by far exceeds the magnitudes of the mean flow and seasonal cycle. Such prominent intraseasonal variability is, however, not seen in zonal current at the same location. Further analysis suggests that the observed intraseasonal flows are closely associated with westward-propagating eddylike sea surface height anomalies (SSHAs) along 5°N. The eddylike SSHAs are largely manifestations of symmetric Rossby waves, which result primarily from intraseasonal wind stress forcing in the equatorial waveguide and reflection of the equatorial Kelvin waves at the eastern boundary. Since the wave signals are generally symmetric about the equator, similar variability is also seen at 5°S but with weaker intensity because of the inclined coastline at the eastern boundary. The Rossby waves propagate westward, causing pronounced intraseasonal SSHA and meridional current in the upper ocean across the entire southern BOB between 84° and 94°E. They greatly weaken in the western Indian Basin, but zonal currents near the equator remain relatively strong.

Full access
Yi-Leng Chen, Yen-Ju Chu, Ching-Sen Chen, Chuan-Chi Tu, Jen-Hsin Teng, and Pay-Liam Lin

Abstract

During 11–12 June 2012, heavy precipitation occurred over the northwestern Taiwan coast (~435 mm) and within the Taipei basin (~477 mm). With the presence of a midlatitude omega-blocking pattern, a persistent cold northerly wind component west of the northeast China low and west of the mei-yu frontal cyclone extends all the way to the subtropics and up to the 700-hPa level. At 2000 LST 11 June, the total precipitable water ahead of the front is elevated (>70 kg m−2) with horizontal southwesterly moisture fluxes >360 g kg−1 m s−1 at the 950-hPa level. The rainfall maximum along the northwestern coast mainly occurs before 0200 LST 12 June, as the convective activities in the frontal zone are enhanced by the localized convergence between the prefrontal southerly barrier jet and environmental airflow. After landfall, the relatively deep (~1.5 km) mei-yu front moves over the mountains (with peaks ~1121 m) along the northern coast and into the Taipei basin. During 0200–0800 LST 12 June, it stalls at the foothills of the Snow Mountains (with peaks ~3886 m) south of the basin under the postfrontal west-northwesterly flow. Rain cells associated with the mei-yu front are enhanced as they move southeastward toward the Snow Mountains. The barrier jet and the rainfall maxima over the northwestern coast and within the Taipei basin are well simulated using the high-resolution WRF Model. With the model terrain removed, the simulated mei-yu front continues to move southward after landfall without reproducing the barrier jet and both observed rainfall maxima.

Full access
Gengxin Chen, Dongxiao Wang, Weiqing Han, Ming Feng, Fan Wang, Yuanlong Li, Ju Chen, and Arnold L. Gordon

Abstract

In the eastern tropical Indian Ocean, intraseasonal variability (ISV) affects the regional oceanography and marine ecosystems. Mooring and satellite observations documented two periods of unusually weak ISV during the past two decades, associated with suppressed baroclinic instability of the South Equatorial Current. Regression analysis and model simulations suggest that the exceptionally weak ISVs were caused primarily by the extreme El Niño events and modulated to a lesser extent by the Indian Ocean dipole. Additional observations confirm that the circulation balance in the Indo-Pacific Ocean was disrupted during the extreme El Niño events, impacting the Indonesian Throughflow Indian Ocean dynamics. This research provides substantial evidence for large-scale modes modulating ISV and the abnormal Indo-Pacific dynamical connection during extreme climate modes.

Restricted access
Ke Huang, Dongxiao Wang, Weiqing Han, Ming Feng, Gengxin Chen, Weiqiang Wang, Ju Chen, and Jian Li

Abstract

Four-year (2014–17) zonal current data observed by a mooring at (5°N, 90.5°E) in the eastern Indian Ocean show a strong semiannual cycle in the middepth (~1200 m) with distinct vertical structure. This pronounced middepth semiannual variability, however, is inconsistent with the local wind forcing, which shows a predominant annual cycle. The underlying causes for this unique middepth variability along 5°N were elucidated with the addition of a reanalysis product and a continuously stratified linear ocean model. The results suggest that the observed seasonal variability in the middepth zonal flow at 5°N is primarily caused by boundary-reflected Rossby waves forced by the remote semiannual winds along the equator. Contribution from the locally wind-forced Rossby waves is much less. The theoretical Wentzel–Kramers–Brillouin ray paths further verify that the strong semiannual variability of the middepth signals over a moored region in the eastern Indian Ocean is largely a manifestation of the steep angles of propagating energy of the long Rossby waves at semiannual time scale. The annual signals are only significant in the upper and western sections (75°–80°E) as a result of the smooth trajectories of Rossby waves forced by local annual winds. Further analysis reveals that the middepth zonal currents along 5°N are expected to be associated with equatorial symmetric Rossby waves at semiannual period. Consequently, similar zonal flows should also exist in the middepth near 5°S.

Full access
Yu-Chieng Liou, Tai-Chi Chen Wang, Wen-Chau Lee, and Ya-Ju Chang

Abstract

The ground-based velocity track display (GBVTD) technique is extended to two Doppler radars to retrieve the structure of a tropical cyclone’s (TC’s) circulation. With this extension, it is found that the asymmetric part of the TC radial wind component can be derived up to its angular wavenumber-1 structure, and the accuracy of the retrieved TC tangential wind component can be further improved. Although two radar systems are used, a comparison with the traditional dual-Doppler synthesis indicates that this extended GBVTD (EGBVTD) approach is able to estimate more of the TC circulation when there are missing data. Previous research along with this study reveals that the existence of strong asymmetric radial flows can degrade the quality of the GBVTD-derived wind fields. When a TC is observed by one radar, it is suggested that the GBVTD method be applied to TCs over a flat surface (e.g., the ocean) where the assumption of relatively smaller asymmetric radial winds than asymmetric tangential winds is more likely to be true. However, when a TC is observed by two radar systems, especially when the topographic effects are expected to be significant, the EGBVTD rather than the traditional dual-Doppler synthesis should be used.

The feasibility of the proposed EGBVTD method is demonstrated by applying it to an idealized TC circulation model as well as a real case study. Finally, the possibility of combining EGBVTD with other observational instruments, such as dropsonde or wind profilers, to recover the asymmetric TC radial flow structures with even higher wavenumbers is discussed.

Full access
Qiang Wang, Weidong Zhou, Lili Zeng, Ju Chen, Yunkai He, and Dongxiao Wang

Abstract

Cross-slope flow plays an important role in the exchange of material, heat, and momentum between the continental shelf and the open sea. In the northern South China Sea (SCS), long-period observations confirm that there is significant cross-slope flow. The variability of this flow is dominated by the intraseasonal component (i.e., the 10–90-day period band) that contributes 74.6% of the total standard deviation. The 10–90-day bandpassed cross-slope flow exhibits almost the same direction vertically in the observed layers, and its first empirical orthogonal function, whose direction is also not changed, contributes 86.7% to its total variance. The strong 10–90-day bandpassed cross-slope flow is phase locked to the boreal winter half year. The intraseasonal variability of cross-slope flow is mainly associated with mesoscale eddies west to the Luzon Strait. The contrasting baroclinic instability growth rates, strong in winter and weak in summer, result in a seasonal cycle of mesoscale eddy kinetic energy, that is, vigorous in winter and weak in summer, which explains the winter phase lock. The interannual variability of baroclinic instability growth rate is mainly determined by the vertical shear of velocity. The strongest vertical shear of velocity from 2014 to 2016 occurred in the winter of 2016/17 and induced the most rapid baroclinic instability growth rate and consequently the largest mesoscale eddy kinetic energy, which resulted in the strongest intraseasonal variability of cross-slope flow. The vertical shear of velocity in the northern SCS is mainly determined by the Luzon Strait transport.

Restricted access
Qiang Wang, Lili Zeng, Jian Li, Ju Chen, Yunkai He, Jinglong Yao, Dongxiao Wang, and Weidong Zhou

Abstract

Cross-shelf flow induced by mesoscale eddies has been investigated in the northern South China Sea (NSCS) using velocity observations from Long Ranger ADCP moorings. Mesoscale eddies influenced the three mooring stations during almost all the observation period. Four quadrants have been defined with the mooring location as the origin, and it is found that warm (cold) mesoscale eddies induce onshore (offshore) movement in the eastern two quadrants and offshore (onshore) movement in the western two quadrants. When an eddy propagates past a mooring station, net cross-shelf flow at the mooring station can be induced by asymmetry in the horizontal and vertical structure of the eddy and by its evolution. As an eddy propagates westward, its shape changes continually and the vertical modes also transform from high to lower modes, which contributes to the net cross-shelf flow. Based on the quasigeostrophic potential vorticity equation, it is confirmed that the net cross-shelf flow is mainly induced by the eddy evolution and suppressed by nonlinear effect. Because of dispersion characteristics of the mesoscale eddy, barotropic mode will restructure at the baroclinic mode area after separating from the baroclinic mode, which will be enhanced by topography slope.

Full access
Jiali Ju, Heng Dai, Chuanhao Wu, Bill X. Hu, Ming Ye, Xingyuan Chen, Dongwei Gui, Haifan Liu, and Jin Zhang

Abstract

Comparison and quantification of different uncertainties of future climate change involved in the modeling of a hydrological system are highly important for both hydrological modelers and policy-makers. However, few studies have accurately estimated the relative importance of different sources of uncertainty at different spatiotemporal scales. Here, a hierarchical sensitivity analysis framework (HSAF) incorporated with a variance-based global sensitivity analysis is developed to quantify the spatiotemporal contributions of different uncertainties in hydrological impacts of climate change in two different climatic (humid and semiarid) basins in China. The uncertainty sources include 3 emission scenarios (ESs), 20 global climate models (GCs), 3 hydrological models (HMs), and the associated sensitive hydrological parameters (PAs) screened and sampled by the Morris and Latin hypercube sampling methods, respectively. The results indicate that the overall trend of uncertainty is PA > HM > GC > ES, but their uncertainties have discrepancies in projections of different hydrological variables. The HM uncertainty in annual and monthly discharge projections is generally larger than the PA uncertainty in the humid basin than semiarid basin. The PA has greater uncertainty in extreme hydrological event (annual peak discharge) projections than in annual discharge projections for both basins (particularly for the humid basin), but contributes larger uncertainty to annual and monthly discharge projections in the semiarid basin than humid basin. The GC contributes larger uncertainty in all the hydrological variables projections in the humid basin than semiarid basin, while the ES uncertainty is rather limited in both basins. Overall, our results suggest there is greater spatiotemporal variability of hydrological uncertainty in more arid regions.

Restricted access