Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Juan M. Fontenla x
  • All content x
Clear All Modify Search
Steven Platnick and Juan M. Fontenla


Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard the Television and Infrared Observational Satellite (TIROS-N), measurements in the 3.7-μm atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7-μm channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7-μm channels, absolute solar spectral irradiance data come from either a single measurement campaign (Thekaekara et al.) or synthetic spectra. In the current study, the historical 3.7-μm band spectral irradiance datasets are compared with the recent semiempirical solar model of the quiet sun by Fontenla et al. The model has expected uncertainties of about 2% in the 3.7-μm spectral region. The channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are found to be 3.2%–4.1% greater than those derived from the Fontenla et al. model for Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR instrument bandpasses; the Kurucz spectrum, as included in the Moderate Spectral Resolution Atmospheric Transmittance (MODTRAN4) distribution, gives channel-averaged irradiances 1.2%–1.5% smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrieval uncertainties that are comparable to other fundamental reflectance error sources.

Full access