Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Julie Deshayes x
  • All content x
Clear All Modify Search
Julie Deshayes and Claude Frankignoul

Abstract

The response of the upper limb of the meridional overturning circulation to the variability of deep-water formation is investigated analytically with a linear, reduced-gravity model in basins of simple geometry. The spectral characteristics of the model response are first derived by prescribing white-noise fluctuations in the meridional transport at the northern boundary. Although low-frequency basin modes are solutions to the eigenproblem, they are too dissipative to be significantly excited by the boundary forcing, and the thermocline depth response has a red spectrum with no prevailing time scale other than that of a high-frequency equatorial mode, only flattening at the millennial time scale because of vertical diffusivity. The meridional transport is asymmetric about the equator because the northern part of the basin is directly influenced by the boundary forcing while the southern part is mostly set in motion by long Rossby waves. This results in the equator acting as a low-pass filter for the Southern Hemisphere, which clarifies the so-called buffering effect of the equator. In a basin connected by a southern circumpolar channel, the thermocline depth and the transport spectra are redder than in the forced basin and, when a somewhat more realistic stochastic forcing derived from general circulation model simulations is considered, the variability is strongly reduced at high frequency. The linear model qualitatively explains several features of the low-frequency variability of the meridional overturning circulation in climate models, such as its red spectrum and its larger intensity in the North Atlantic Ocean.

Full access
Julie Deshayes and Claude Frankignoul

Abstract

The variability of the circulation in the North Atlantic and its link with atmospheric variability are investigated in a realistic hindcast simulation from 1953 to 2003. The interannual-to-decadal variability of the subpolar gyre circulation and the Meridional Overturning Circulation (MOC) is mostly influenced by the North Atlantic Oscillation (NAO). Both circulations intensified from the early 1970s to the mid-1990s and then decreased. The monthly variability of both circulations reflects the fast barotropic adjustment to NAO-related Ekman pumping anomalies, while the interannual-to-decadal variability is due to the baroclinic adjustment to Ekman pumping, buoyancy forcing, and dense water formation, consistent with previous studies.

An original characteristic of the oceanic response to NAO is presented that relates to the spatial patterns of buoyancy and wind forcing over the North Atlantic. Anomalous Ekman pumping associated with a positive NAO phase first induces a decrease of the southern subpolar gyre strength and an intensification of the northern subpolar gyre. The latter is reinforced by buoyancy loss and dense water formation in the Irminger Sea, where the cyclonic circulation increases 1–2 yr after the positive NAO phase. Increased buoyancy loss also occurs in the Labrador Sea, but because of the early decrease of the southern subpolar gyre strength, the intensification of the cyclonic circulation is delayed. Hence the subpolar gyre and the MOC start increasing in the Irminger Sea, while in the Labrador Sea the circulation at depth leads its surface counterpart. In this simulation where the transport of dense water through the North Atlantic sills is underestimated, the MOC variability is well represented by a simple integrator of convection in the Irminger Sea, which fits better than a direct integration of NAO forcing.

Full access
Julie Deshayes, Ruth Curry, and Rym Msadek

Abstract

The subpolar North Atlantic is a center of variability of ocean properties, wind stress curl, and air–sea exchanges. Observations and hindcast simulations suggest that from the early 1970s to the mid-1990s the subpolar gyre became fresher while the gyre and meridional circulations intensified. This is opposite to the relationship of freshening causing a weakened circulation, most often reproduced by climate models. The authors hypothesize that both these configurations exist but dominate on different time scales: a fresher subpolar gyre when the circulation is more intense, at interannual frequencies (configuration A), and a saltier subpolar gyre when the circulation is more intense, at longer periods (configuration B). Rather than going into the detail of the mechanisms sustaining each configuration, the authors’ objective is to identify which configuration dominates and to test whether this depends on frequency, in preindustrial control runs of five climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). To this end, the authors have developed a novel intercomparison method that enables analysis of freshwater budget and circulation changes in a physical perspective that overcomes model specificities. Lag correlations and a cross-spectral analysis between freshwater content changes and circulation indices validate the authors’ hypothesis, as configuration A is only visible at interannual frequencies while configuration B is mostly visible at decadal and longer periods, suggesting that the driving role of salinity on the circulation depends on frequency. Overall, this analysis underscores the large differences among state-of-the-art climate models in their representations of the North Atlantic freshwater budget.

Full access
Jérôme Sirven, Christophe Herbaut, Julie Deshayes, and Claude Frankignoul

Abstract

The response of the ocean to stochastic forcings is studied in a closed basin, using a simple one-dimensional analytical model. The focus is on the mechanisms that determine the time scales of the response and their possible links with free basin modes. The response may be described as a forced solution plus propagating solutions whose spatial pattern does not depend on the forcing. The propagating solutions are of two types. The first ones propagate eastward and are strongly damped so that their influence remains limited to the western boundary layer. The others are damped long Rossby waves that propagate westward and whose amplitude depends on the spatial extension and the frequency of the forcing. The amplitude increases if the frequency of the forcing is close to the frequency of the basin modes, but the spatial pattern differs from that of the latter; higher frequencies are favored if the zonal extension of the forcing is reduced. The response of a 1.5-layer reduced-gravity ocean model forced by stochastic Ekman pumping confirms the results of the analytical model.

Full access
Nicolas Barrier, Christophe Cassou, Julie Deshayes, and Anne-Marie Treguier

Abstract

A new framework is proposed for investigating the atmospheric forcing of North Atlantic Ocean circulation. Instead of using classical modes of variability, such as the North Atlantic Oscillation (NAO) or the east Atlantic pattern, the weather regimes paradigm was used. Using this framework helped avoid problems associated with the assumptions of orthogonality and symmetry that are particular to modal analysis and known to be unsuitable for the NAO. Using ocean-only historical and sensitivity experiments, the impacts of the four winter weather regimes on horizontal and overturning circulations were investigated. The results suggest that the Atlantic Ridge (AR), negative NAO (NAO), and positive NAO (NAO+) regimes induce a fast (monthly-to-interannual time scales) adjustment of the gyres via topographic Sverdrup dynamics and of the meridional overturning circulation via anomalous Ekman transport. The wind anomalies associated with the Scandinavian blocking regime (SBL) are ineffective in driving a fast wind-driven oceanic adjustment. The response of both gyre and overturning circulations to persistent regime conditions was also estimated. AR causes a strong, wind-driven reduction in the strengths of the subtropical and subpolar gyres, while NAO+ causes a strengthening of the subtropical gyre via wind stress curl anomalies and of the subpolar gyre via heat flux anomalies. NAO induces a southward shift of the gyres through the southward displacement of the wind stress curl. The SBL is found to impact the subpolar gyre only via anomalous heat fluxes. The overturning circulation is shown to spin up following persistent SBL and NAO+ and to spin down following persistent AR and NAO conditions. These responses are driven by changes in deep water formation in the Labrador Sea.

Full access
Matthew D. Thomas, Anne-Marie Tréguier, Bruno Blanke, Julie Deshayes, and Aurore Voldoire

Abstract

Large differences in the Atlantic meridional overturning circulation (AMOC) exhibited between the available ocean models pose problems as to how they can be interpreted for climate policy. A novel Lagrangian methodology has been developed for use with ocean models that enables a decomposition of the AMOC according to its source waters of subduction from the mixed layer of different geographical regions. The method is described here and used to decompose the AMOC of the Centre National de Recherches Météorologiques (CNRM) ocean model, which is approximately 4.5 Sv (1 Sv = 106 m3 s−1) too weak at 26°N, compared to observations. Contributions from mixed layer subduction to the peak AMOC at 26°N in the model are dominated by the Labrador Sea, which contributes 7.51 Sv; but contributions from the Nordic seas, the Irminger Sea, and the Rockall basin are also important. These waters mostly originate where deep mixed layers border the topographic slopes of the Subpolar Gyre and Nordic seas. The too-weak model AMOC can be explained by weak model representations of the overflow and of Irminger Sea subduction. These are offset by the large Labrador Sea component, which is likely to be too strong as a result of unrealistically distributed and too-deep mixed layers near the shelf.

Full access