Search Results
You are looking at 1 - 10 of 68 items for
- Author or Editor: Jun Wang x
- Refine by Access: All Content x
Abstract
The trends in wind speed at a typical wind turbine hub height (80 m) are analyzed using the North American Regional Reanalysis (NARR) dataset for 1979–2009. A method, assuming the wind profile in the lower boundary layer as power-law functions of altitude, is developed to invert the power exponent (in the power-law equation) from the NARR data and to compute the following variables at 80 m that are needed for the estimation and interpretation of the trend in wind speed: air density, zonal wind u, meridional wind υ, and wind speed. Statistically significant and positive annual trends are found to be predominant over the contiguous United States, with spring and winter being the two largest contributing seasons. Positive trends in surface wind speed are generally smaller than those at 80 m, with less spatial coverage, reflecting stronger increases in wind speed at altitudes above the 80-m level. Large and positive trends in winds over the southeastern region and high-mountain region are primarily due to the increasing trend in southerly wind, while the trends over the northern states (near the Canadian border) are primarily due to the increasing trend in westerly wind. Trends in the 90th percentile of the annual wind speed, a better indicator for the trend in wind power recourses, are 40%–50% larger than but geographically similar to the trends in the annual mean wind speed. The probable climatic drivers for change in wind speed and direction are discussed, and further studies are needed to evaluate the fidelity of wind speed and direction in the NARR.
Abstract
The trends in wind speed at a typical wind turbine hub height (80 m) are analyzed using the North American Regional Reanalysis (NARR) dataset for 1979–2009. A method, assuming the wind profile in the lower boundary layer as power-law functions of altitude, is developed to invert the power exponent (in the power-law equation) from the NARR data and to compute the following variables at 80 m that are needed for the estimation and interpretation of the trend in wind speed: air density, zonal wind u, meridional wind υ, and wind speed. Statistically significant and positive annual trends are found to be predominant over the contiguous United States, with spring and winter being the two largest contributing seasons. Positive trends in surface wind speed are generally smaller than those at 80 m, with less spatial coverage, reflecting stronger increases in wind speed at altitudes above the 80-m level. Large and positive trends in winds over the southeastern region and high-mountain region are primarily due to the increasing trend in southerly wind, while the trends over the northern states (near the Canadian border) are primarily due to the increasing trend in westerly wind. Trends in the 90th percentile of the annual wind speed, a better indicator for the trend in wind power recourses, are 40%–50% larger than but geographically similar to the trends in the annual mean wind speed. The probable climatic drivers for change in wind speed and direction are discussed, and further studies are needed to evaluate the fidelity of wind speed and direction in the NARR.
Abstract
Hydrological models play an important role in water resources management and extreme events forecasting, and they are sensitive to the underlying conditions. This study aims to evaluate the impact of different soil-type maps and land-use maps on hydrological simulations and watershed responses by applying the WRF-Hydro (Weather Research and Forecasting Model Hydrological modeling system) distributed hydrological model to the Xijiang River basin. WRF-Hydro runs for four different scenarios for the period 1992–2013. FAO (Food and Agriculture Organization) and GSDE (Global Soil Dataset for Earth System Science) soil-type maps, and MODIS (Moderate-Resolution Imaging Spectroradiometer) and CNLUCC (China Land Use Land Cover Remote Sensing Monitoring Dataset) land-use maps are used in this study. These soil-type maps and land-use maps are freely combined to form four scenarios. It is found that soil moisture and surface runoff are sensitive to soil-type maps, and absorbed shortwave radiation is found to be the least sensitive to soil-type maps. Absorbed shortwave radiation and heat flux are sensitive to land-use maps. The model performance of simulating soil moisture has increased when the soil-type map changes from FAO to GSDE and the land-use map changes from MODIS to CNLUCC for most stations. When the soil-type map changes from FAO to GSDE and the land-use map changes from MODIS to CNLUCC, the biases of simulating streamflow decrease. This study shows that the performance of the offline WRF-Hydro is significantly influenced by soil-type and land-use maps, and better simulation results can be obtained with more realistic underlying surface maps.
Significance Statement
The purpose of this study is to evaluate the impacts of land-use and soil-type maps on hydrological processes at the watershed scale by applying a distributed hydrological model WRF-Hydro model for the Xijiang River basin and reveal the importance of choosing land-use and soil-type maps. In this study, two soil-type maps and two land-use maps are used. It is found that soil moisture and surface runoff are sensitive to soil-type maps, and absorbed shortwave radiation and heat flux are sensitive to land-use maps. When using GSDE soil-type and CNLUCC land-use maps, the performance of the model is improved. The underlying conditions should be considered when applying the models in practice.
Abstract
Hydrological models play an important role in water resources management and extreme events forecasting, and they are sensitive to the underlying conditions. This study aims to evaluate the impact of different soil-type maps and land-use maps on hydrological simulations and watershed responses by applying the WRF-Hydro (Weather Research and Forecasting Model Hydrological modeling system) distributed hydrological model to the Xijiang River basin. WRF-Hydro runs for four different scenarios for the period 1992–2013. FAO (Food and Agriculture Organization) and GSDE (Global Soil Dataset for Earth System Science) soil-type maps, and MODIS (Moderate-Resolution Imaging Spectroradiometer) and CNLUCC (China Land Use Land Cover Remote Sensing Monitoring Dataset) land-use maps are used in this study. These soil-type maps and land-use maps are freely combined to form four scenarios. It is found that soil moisture and surface runoff are sensitive to soil-type maps, and absorbed shortwave radiation is found to be the least sensitive to soil-type maps. Absorbed shortwave radiation and heat flux are sensitive to land-use maps. The model performance of simulating soil moisture has increased when the soil-type map changes from FAO to GSDE and the land-use map changes from MODIS to CNLUCC for most stations. When the soil-type map changes from FAO to GSDE and the land-use map changes from MODIS to CNLUCC, the biases of simulating streamflow decrease. This study shows that the performance of the offline WRF-Hydro is significantly influenced by soil-type and land-use maps, and better simulation results can be obtained with more realistic underlying surface maps.
Significance Statement
The purpose of this study is to evaluate the impacts of land-use and soil-type maps on hydrological processes at the watershed scale by applying a distributed hydrological model WRF-Hydro model for the Xijiang River basin and reveal the importance of choosing land-use and soil-type maps. In this study, two soil-type maps and two land-use maps are used. It is found that soil moisture and surface runoff are sensitive to soil-type maps, and absorbed shortwave radiation and heat flux are sensitive to land-use maps. When using GSDE soil-type and CNLUCC land-use maps, the performance of the model is improved. The underlying conditions should be considered when applying the models in practice.
Abstract
Disdrometer data measured by ground-based optical disdrometers during a midlatitude continental squall line event on 18 August 2012 in Shandong Province, eastern China, are analyzed to study characteristics of raindrop size distribution (DSD). Four disdrometers simultaneously performed continuous measurements during the passage of the convective line. The convective line was partitioned into three regions: the convective center, leading edge, and trailing edge. Results show distinct differences in DSDs and integral rainfall parameters between the convective-center and the edge regions. The convective center has higher drop concentrations, larger mean diameters, and wider size distributions when compared with the edge regions. The leading and trailing edges have similar drop concentrations, but the latter has larger mean diameters and wider size distributions. The shape of DSD for the convective center is convex down, whereas it is convex upward in tropical continental squall lines, as reported in the literature. There is also spatial variability of the DSD and its integral rainfall parameters in the along-convective-line direction.
Abstract
Disdrometer data measured by ground-based optical disdrometers during a midlatitude continental squall line event on 18 August 2012 in Shandong Province, eastern China, are analyzed to study characteristics of raindrop size distribution (DSD). Four disdrometers simultaneously performed continuous measurements during the passage of the convective line. The convective line was partitioned into three regions: the convective center, leading edge, and trailing edge. Results show distinct differences in DSDs and integral rainfall parameters between the convective-center and the edge regions. The convective center has higher drop concentrations, larger mean diameters, and wider size distributions when compared with the edge regions. The leading and trailing edges have similar drop concentrations, but the latter has larger mean diameters and wider size distributions. The shape of DSD for the convective center is convex down, whereas it is convex upward in tropical continental squall lines, as reported in the literature. There is also spatial variability of the DSD and its integral rainfall parameters in the along-convective-line direction.
No abstract available.
No abstract available.
Abstract
A new gas-tight pair sampler was designed for the collection of gas-tight fluid samples from the hadal zone. The sampler uses two titanium bottles and one sampling valve to collect two samples at once. The sampler can be deployed in the deepest trenches in the ocean as a result of its ability to resist ultrahigh pressure and its good bidirectional sealing performance. It can be used on manned submersibles, remotely operated vehicles, and deep-sea landers. Three sets of this new sampler were constructed and field tested in the Mariana Trench during the cruise TS-03 from 15 January to 23 March 2017, during which 3 L of water samples were successfully obtained from the bottom of the Challenger Deep.
Abstract
A new gas-tight pair sampler was designed for the collection of gas-tight fluid samples from the hadal zone. The sampler uses two titanium bottles and one sampling valve to collect two samples at once. The sampler can be deployed in the deepest trenches in the ocean as a result of its ability to resist ultrahigh pressure and its good bidirectional sealing performance. It can be used on manned submersibles, remotely operated vehicles, and deep-sea landers. Three sets of this new sampler were constructed and field tested in the Mariana Trench during the cruise TS-03 from 15 January to 23 March 2017, during which 3 L of water samples were successfully obtained from the bottom of the Challenger Deep.
Abstract
This paper details the development and application of a novel pressure-tight sampler with a metal seal capable of acquiring high-purity fluid samples from deep-sea hydrothermal vents. The sampler has a titanium diaphragm valve for sampling and a flexible titanium foil bag to store the fluid sample. Hence, all parts of the sampler in contact with the sample are made of titanium without elastomer O-ring seals to minimize the organic carbon blank of the sampler, which makes it suitable for collecting organic samples. A pressure-tight structure was specially designed to maintain the sample at in situ pressure during the recovery of the sampler. The sampler has been successfully tested in a sea trial from November 2018 to March 2019, and pressure-tight hydrothermal fluid samples have been collected.
Abstract
This paper details the development and application of a novel pressure-tight sampler with a metal seal capable of acquiring high-purity fluid samples from deep-sea hydrothermal vents. The sampler has a titanium diaphragm valve for sampling and a flexible titanium foil bag to store the fluid sample. Hence, all parts of the sampler in contact with the sample are made of titanium without elastomer O-ring seals to minimize the organic carbon blank of the sampler, which makes it suitable for collecting organic samples. A pressure-tight structure was specially designed to maintain the sample at in situ pressure during the recovery of the sampler. The sampler has been successfully tested in a sea trial from November 2018 to March 2019, and pressure-tight hydrothermal fluid samples have been collected.
Abstract
The Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) mission core satellite provides the new-generation global observation of rain since 2014. The main objective of this paper is to evaluate the suitability and limitation of GPM-DPR level-2 products over China. The DPR rain rate products are compared with rain gauge data during the summers of 5 years (2014–18). The ground observation network is composed of more than 50 000 rain gauges. The DPR precipitation products for all scans (DPR_NS, DPR_MS, and DPR_HS) generally underestimate rain rates. However, DPR_MS agrees better with gauge estimates than DPR_NS and DPR_HS, yielding the lowest mean error, systematic deviation, and highest Pearson correlation coefficient. In addition, all three swath types show obvious overestimation over gauge estimates between 0.5 and 1 mm h−1 and underestimation when gauge estimates are larger than 1 mm h−1. The DPR_HS and DPR_MS agree better with gauge estimates below and above 2.5 mm h−1, respectively. A deeper investigation was carried out to analyze the variation of DPR_MS’s performance with respect to terrains over China. An obvious underestimation, relative to gauge estimates, occurs in Tibetan Plateau while a slight overestimation occurs in the North China Plain. Furthermore, our comprehensive analysis suggests that in Sichuan Basin, the DPR_MS exhibit the best agreement with gauge estimates.
Abstract
The Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) mission core satellite provides the new-generation global observation of rain since 2014. The main objective of this paper is to evaluate the suitability and limitation of GPM-DPR level-2 products over China. The DPR rain rate products are compared with rain gauge data during the summers of 5 years (2014–18). The ground observation network is composed of more than 50 000 rain gauges. The DPR precipitation products for all scans (DPR_NS, DPR_MS, and DPR_HS) generally underestimate rain rates. However, DPR_MS agrees better with gauge estimates than DPR_NS and DPR_HS, yielding the lowest mean error, systematic deviation, and highest Pearson correlation coefficient. In addition, all three swath types show obvious overestimation over gauge estimates between 0.5 and 1 mm h−1 and underestimation when gauge estimates are larger than 1 mm h−1. The DPR_HS and DPR_MS agree better with gauge estimates below and above 2.5 mm h−1, respectively. A deeper investigation was carried out to analyze the variation of DPR_MS’s performance with respect to terrains over China. An obvious underestimation, relative to gauge estimates, occurs in Tibetan Plateau while a slight overestimation occurs in the North China Plain. Furthermore, our comprehensive analysis suggests that in Sichuan Basin, the DPR_MS exhibit the best agreement with gauge estimates.
Abstract
A high-resolution cloud-permitting simulation with the Weather Research and Forecasting (WRF) Model is performed to investigate the mesoscale horizontal kinetic energy (HKE) spectra of a tropical cyclone (TC). The spectrum displays an arc-like shape in the troposphere and a quasi-linear shape in the lower stratosphere for wavelengths below 500 km during the mature period of the TC, while they both develop a quasi −5/3 slope. The total HKE spectrum is dominated by its rotational component in the troposphere but by its divergent component in the lower stratosphere. Further spectral HKE budget diagnosis reveals a generally downscale cascade of HKE, although a local upscale cascade gradually forms in the lower stratosphere. However, the mesoscale energy spectrum is not only governed by the energy cascade, but is evidently influenced also by other physical processes, among which the buoyancy effect converts available potential energy (APE) to HKE in the mid- and upper troposphere and converts HKE to APE in the lower stratosphere, the vertically propagating inertia–gravity waves transport the HKE from the upper troposphere to lower and higher layers, and the vertical transportation of convection always transports HKE upward.
Abstract
A high-resolution cloud-permitting simulation with the Weather Research and Forecasting (WRF) Model is performed to investigate the mesoscale horizontal kinetic energy (HKE) spectra of a tropical cyclone (TC). The spectrum displays an arc-like shape in the troposphere and a quasi-linear shape in the lower stratosphere for wavelengths below 500 km during the mature period of the TC, while they both develop a quasi −5/3 slope. The total HKE spectrum is dominated by its rotational component in the troposphere but by its divergent component in the lower stratosphere. Further spectral HKE budget diagnosis reveals a generally downscale cascade of HKE, although a local upscale cascade gradually forms in the lower stratosphere. However, the mesoscale energy spectrum is not only governed by the energy cascade, but is evidently influenced also by other physical processes, among which the buoyancy effect converts available potential energy (APE) to HKE in the mid- and upper troposphere and converts HKE to APE in the lower stratosphere, the vertically propagating inertia–gravity waves transport the HKE from the upper troposphere to lower and higher layers, and the vertical transportation of convection always transports HKE upward.
Abstract
High-resolution cloud-permitting simulations with the Weather Research and Forecasting (WRF) Model are performed to study the generation, structure, and characteristics of mesoscale gravity waves in an idealized mei-yu front system. Two classes of waves are generated successively during the control simulation. The first class of waves, which is typical of vertically propagating waves excited by the front itself, appears as the front develops before the generation of the prefrontal moist convection and has a coherent fanlike pattern from the troposphere to the lower stratosphere. The second class of waves, which is much stronger than the fanlike waves, appears accompanied by the generation of the moist convection. It is nearly vertically trapped in the troposphere, while it propagates vertically upstream and downstream in the lower stratosphere. The source function analysis is introduced to demonstrate that the mechanical oscillator mechanism plays a dominant role in the generation of convective gravity waves in the lower stratosphere. The vertical motion induced by the deep convection develops upward in the troposphere, overshoots the level of neutral buoyancy (LNB), and impinges on the tropopause. The net buoyancy forces the air parcels to oscillate about the LNB, thus initiating gravity waves in the lower stratosphere. Further spectral analysis shows that the upstream waves have more abundant wavenumber–frequency and phase speed space distributions than the downstream waves. And the former amplify with height while the latter weaken in general under the effect of background northerly wind. The power spectral densities of downstream waves concentrate on faster phase speed than those of upstream waves.
Abstract
High-resolution cloud-permitting simulations with the Weather Research and Forecasting (WRF) Model are performed to study the generation, structure, and characteristics of mesoscale gravity waves in an idealized mei-yu front system. Two classes of waves are generated successively during the control simulation. The first class of waves, which is typical of vertically propagating waves excited by the front itself, appears as the front develops before the generation of the prefrontal moist convection and has a coherent fanlike pattern from the troposphere to the lower stratosphere. The second class of waves, which is much stronger than the fanlike waves, appears accompanied by the generation of the moist convection. It is nearly vertically trapped in the troposphere, while it propagates vertically upstream and downstream in the lower stratosphere. The source function analysis is introduced to demonstrate that the mechanical oscillator mechanism plays a dominant role in the generation of convective gravity waves in the lower stratosphere. The vertical motion induced by the deep convection develops upward in the troposphere, overshoots the level of neutral buoyancy (LNB), and impinges on the tropopause. The net buoyancy forces the air parcels to oscillate about the LNB, thus initiating gravity waves in the lower stratosphere. Further spectral analysis shows that the upstream waves have more abundant wavenumber–frequency and phase speed space distributions than the downstream waves. And the former amplify with height while the latter weaken in general under the effect of background northerly wind. The power spectral densities of downstream waves concentrate on faster phase speed than those of upstream waves.
Abstract
Terrain and cloud height heavily impact ozone information despite ozone being concentrated in the stratosphere. The ozone weighting function (OWF) provides important information towards understanding the capabilities and limitations of a given channel. The factors that impact the OWF can be analyzed using radiative transfer theory and modeling. At the 9.6-μm infrared spectral region, both the OWF values and peaks are related to the surface temperature, terrain altitude, and cloud height. Warmer surface temperatures, lower terrain altitude, or lower cloud levels will give larger weighting function values, and the peak of the weighting function slightly increases with the increase in surface temperature, terrain altitude, or cloud height. For longer UV bands such as 306 and 318 nm, OWF shows smaller values for higher terrains, while showing larger values when clouds are present. However, in the shorter UV bands such as 274 and 288 nm, OWF has almost no relationship with the surface and clouds. Therefore, with satellite-based infrared ozone remote sensing, high terrain and cloud presence will reduce ozone sensitivity and information content. In addition, for UV bands, the effect is spectrally dependent: lower terrain altitude and the presence of clouds will increase the zone information content in the longer UV band, but they have no effect in the short UV band. A simulation of an ozone retrieval in the infrared band shows that higher terrain results in lower precision for colder emitting surface temperatures and less ozone absorption signal.
Abstract
Terrain and cloud height heavily impact ozone information despite ozone being concentrated in the stratosphere. The ozone weighting function (OWF) provides important information towards understanding the capabilities and limitations of a given channel. The factors that impact the OWF can be analyzed using radiative transfer theory and modeling. At the 9.6-μm infrared spectral region, both the OWF values and peaks are related to the surface temperature, terrain altitude, and cloud height. Warmer surface temperatures, lower terrain altitude, or lower cloud levels will give larger weighting function values, and the peak of the weighting function slightly increases with the increase in surface temperature, terrain altitude, or cloud height. For longer UV bands such as 306 and 318 nm, OWF shows smaller values for higher terrains, while showing larger values when clouds are present. However, in the shorter UV bands such as 274 and 288 nm, OWF has almost no relationship with the surface and clouds. Therefore, with satellite-based infrared ozone remote sensing, high terrain and cloud presence will reduce ozone sensitivity and information content. In addition, for UV bands, the effect is spectrally dependent: lower terrain altitude and the presence of clouds will increase the zone information content in the longer UV band, but they have no effect in the short UV band. A simulation of an ozone retrieval in the infrared band shows that higher terrain results in lower precision for colder emitting surface temperatures and less ozone absorption signal.