Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Junhong Wei x
  • Refine by Access: All Content x
Clear All Modify Search
Junhong Wei and Fuqing Zhang

Abstract

A series of cloud-permitting simulations with the Weather Research and Forecast model (WRF) are performed to study the characteristics and source mechanisms of mesoscale gravity waves in moist baroclinic jet–front systems with varying degrees of convective instability. These idealized experiments are initialized with the same baroclinic jet but with different initial moisture content, which produce different life cycles of moist baroclinic waves, to investigate the relative roles of moist processes and baroclinicity in the generation and propagation of mesoscale gravity waves. The dry experiment with no moisture or convection simulates gravity waves that are consistent with past modeling studies. An experiment with a small amount of moisture produces similar baroclinic life cycles to the dry experiment but with the introduction of weak convective instability. Subsequent initiation of convection, although weak, may considerably amplify the gravity waves that are propagating away from the upper-level jet exit region crossing the ridge to the jet entrance region. The weak convection also generates a new wave mode of shorter-scale wave packets that are believed to interact with, strengthen, and modify the dry gravity wave modes. Further increase of the moisture content (up to 5 times) leads to strong convective instability and vigorous moist convection. Besides a faster-growing moist baroclinic wave, the convectively generated gravity waves emerge much earlier, are more prevalent, and are larger in amplitude; they are fully coupled with, and hardly separable from, the dry gravity wave modes under the complex background moist baroclinic waves.

Full access
Junhong Wei, Gergely Bölöni, and Ulrich Achatz

Abstract

This paper compares two different approaches for the efficient modeling of subgrid-scale inertia–gravity waves in a rotating compressible atmosphere. The first approach, denoted as the pseudomomentum scheme, exploits the fact that in a Lagrangian-mean reference frame the response of a large-scale flow can only be due to forcing momentum. Present-day gravity wave parameterizations follow this route. They do so, however, in an Eulerian-mean formulation. Transformation to that reference frame leads, under certain assumptions, to pseudomomentum-flux convergence by which the momentum is to be forced. It can be shown that this approach is justified if the large-scale flow is in geostrophic and hydrostatic balance. Otherwise, elastic and thermal effects might be lost. In the second approach, called the direct scheme and not relying on such assumptions, the large-scale flow is forced both in the momentum equation, by anelastic momentum-flux convergence and an additional elastic term, and in the entropy equation, via entropy-flux convergence. A budget analysis based on one-dimensional wave packets suggests that the comparison between the abovementioned two schemes should be sensitive to the following two parameters: 1) the intrinsic frequency and 2) the wave packet scale. The smaller the intrinsic frequency is, the greater their differences are. More importantly, with high-resolution wave-resolving simulations as a reference, this study shows conclusive evidence that the direct scheme is more reliable than the pseudomomentum scheme, regardless of whether one-dimensional or two-dimensional wave packets are considered. In addition, sensitivity experiments are performed to further investigate the relative importance of each term in the direct scheme, as well as the wave–mean flow interactions during the wave propagation.

Full access
Junhong Wei, Fuqing Zhang, and Jadwiga H. Richter

Abstract

This study investigates gravity wave spectral characteristics based on high-resolution mesoscale simulations of idealized moist baroclinic jet–front systems with varying degrees of convective instability, with the intent of improving nonorographic gravity wave parameterizations. In all experiments, there is a clear dominance of negative vertical flux of zonal momentum. The westward momentum flux is distributed around the estimated ground-based baroclinic wave phase velocity along the zonal direction, while strong moist runs indicate a dipole structure pattern with stronger westward momentum flux centers at slower phase velocity and weaker eastward momentum flux centers at faster phase velocity. The spectral properties of short-scale wave components (50–200 km) generally differ from those of medium-scale ones (200–600 km). Compared to the medium-scale wave components, the momentum flux phase speed spectra for the short-scale ones appear to be more sensitive to the increasing initial moisture content. The spectral behavior in horizontal wavenumber space or phase velocity space is highly anisotropic, with a noticeable preference along the jet direction, except for the short-scale components in strong moist runs. It is confirmed that the dry gravity wave source (i.e., upper jet and/or surface front) generates a relatively narrow and less symmetrical power spectrum (dominated by negative momentum flux) centered around lower phase velocity and horizontal wavenumber, whereas the moist gravity wave source (i.e., moist convection) generates a broader and more symmetrical power spectrum, with a broader range of phase speeds and horizontal wavenumbers. This study also shows that the properties of gravity wave momentum flux depend on the location relative to the baroclinic jet.

Full access
Tingting Qian, Junhong Wei, Yongqiang Sun, Yinghui Lu, and James H. Ruppert Jr.

Abstract

This paper investigates the limitation in calculating the vertical wavelength of downward phase propagating gravity waves from the vertical fluctuation of idealized radiosonde balloons in a homogeneous background environment. The wave signals are artificially observed by an idealized weather balloon with a constant ascent rate. The apparent vertical wavelengths obtained from the moving radiosonde balloon are compared to the true vertical wavelength obtained from the dispersion relation, both in the no-wind case and in the constant zonal flow case. The node method and FFT method are employed to calculate the apparent vertical wavelength from the sounding profile. The difference between the node apparent vertical wavelength and the true vertical wavelength is attributed to the fact that the ascent rate of the balloon and the downward phase speed induce a strong Doppler-shifting bias on the apparent vertical wavelength from the observation records. The difference between the FFT apparent vertical wavelength and the true vertical wavelength includes both the Doppler-shifting bias and the mathematical bias. The extent to which the apparent vertical wavelength is reliable is discussed. The Coriolis parameter has negligible effects on the comparison between the true vertical wavelength and the apparent one.

Restricted access
Jannik Wilhelm, T. R. Akylas, Gergely Bölöni, Junhong Wei, Bruno Ribstein, Rupert Klein, and Ulrich Achatz

Abstract

As present weather forecast codes and increasingly many atmospheric climate models resolve at least part of the mesoscale flow, and hence also internal gravity waves (GWs), it is natural to ask whether even in such configurations subgrid-scale GWs might impact the resolved flow and how their effect could be taken into account. This motivates a theoretical and numerical investigation of the interactions between unresolved submesoscale and resolved mesoscale GWs, using Boussinesq dynamics for simplicity. By scaling arguments, first a subset of submesoscale GWs that can indeed influence the dynamics of mesoscale GWs is identified. Therein, hydrostatic GWs with wavelengths corresponding to the largest unresolved scales of present-day limited-area weather forecast models are an interesting example. A large-amplitude WKB theory, allowing for a mesoscale unbalanced flow, is then formulated, based on multiscale asymptotic analysis utilizing a proper scale-separation parameter. Purely vertical propagation of submesoscale GWs is found to be most important, implying inter alia that the resolved flow is only affected by the vertical flux convergence of submesoscale horizontal momentum at leading order. In turn, submesoscale GWs are refracted by mesoscale vertical wind shear while conserving their wave-action density. An efficient numerical implementation of the theory uses a phase-space ray tracer, thus handling the frequent appearance of caustics. The WKB approach and its numerical implementation are validated successfully against submesoscale-resolving simulations of the resonant radiation of mesoscale inertia GWs by a horizontally as well as vertically confined submesoscale GW packet.

Full access
Gergely Bölöni, Bruno Ribstein, Jewgenija Muraschko, Christine Sgoff, Junhong Wei, and Ulrich Achatz

Abstract

With the aim of contributing to the improvement of subgrid-scale gravity wave (GW) parameterizations in numerical weather prediction and climate models, the comparative relevance in GW drag of direct GW–mean flow interactions and turbulent wave breakdown are investigated. Of equal interest is how well Wentzel–Kramer–Brillouin (WKB) theory can capture direct wave–mean flow interactions that are excluded by applying the steady-state approximation. WKB is implemented in a very efficient Lagrangian ray-tracing approach that considers wave-action density in phase space, thereby avoiding numerical instabilities due to caustics. It is supplemented by a simple wave-breaking scheme based on a static-instability saturation criterion. Idealized test cases of horizontally homogeneous GW packets are considered where wave-resolving large-eddy simulations (LESs) provide the reference. In all of these cases, the WKB simulations including direct GW–mean flow interactions already reproduce the LES data to a good accuracy without a wave-breaking scheme. The latter scheme provides a next-order correction that is useful for fully capturing the total energy balance between wave and mean flow. Moreover, a steady-state WKB implementation as used in present GW parameterizations where turbulence provides by the noninteraction paradigm, the only possibility to affect the mean flow, is much less able to yield reliable results. The GW energy is damped too strongly and induces an oversimplified mean flow. This argues for WKB approaches to GW parameterization that take wave transience into account.

Full access
James H. Ruppert Jr., Steven E. Koch, Xingchao Chen, Yu Du, Anton Seimon, Y. Qiang Sun, Junhong Wei, and Lance F. Bosart

Abstract

Over the course of his career, Fuqing Zhang drew vital new insights into the dynamics of meteorologically significant mesoscale gravity waves (MGWs), including their generation by unbalanced jet streaks, their interaction with fronts and organized precipitation, and their importance in midlatitude weather and predictability. Zhang was the first to deeply examine “spontaneous balance adjustment” – the process by which MGWs are continuously emitted as baroclinic growth drives the upper-level flow out of balance. Through his pioneering numerical model investigation of the large-amplitude MGW event of 4 January 1994, he additionally demonstrated the critical role of MGW–moist convection interaction in wave amplification.

Zhang’s curiosity-turned-passion in atmospheric science covered a vast range of topics and led to the birth of new branches of research in mesoscale meteorology and numerical weather prediction. Yet, it was his earliest studies into midlatitude MGWs and their significant impacts on hazardous weather that first inspired him. Such MGWs serve as the focus of this review, wherein we seek to pay tribute to his groundbreaking contributions, review our current understanding, and highlight critical open science issues. Chief among such issues is the nature of MGW amplification through feedback with moist convection, which continues to elude our understanding. The pressing nature of this subject is underscored by the continued failure of operational numerical forecast models to adequately predict most large-amplitude MGW events. Further research into such issues therefore presents a valuable opportunity to improve the understanding and forecasting of this high-impact weather phenomenon, and in turn to preserve the spirit of Zhang’s dedication to this subject.

Full access
James H. Ruppert Jr., Steven E. Koch, Xingchao Chen, Yu Du, Anton Seimon, Y. Qiang Sun, Junhong Wei, and Lance F. Bosart

Abstract

Over the course of his career, Fuqing Zhang drew vital new insights into the dynamics of meteorologically significant mesoscale gravity waves (MGWs), including their generation by unbalanced jet streaks, their interaction with fronts and organized precipitation, and their importance in midlatitude weather and predictability. Zhang was the first to deeply examine “spontaneous balance adjustment”—the process by which MGWs are continuously emitted as baroclinic growth drives the upper-level flow out of balance. Through his pioneering numerical model investigation of the large-amplitude MGW event of 4 January 1994, he additionally demonstrated the critical role of MGW–moist convection interaction in wave amplification. Zhang’s curiosity-turned-passion in atmospheric science covered a vast range of topics and led to the birth of new branches of research in mesoscale meteorology and numerical weather prediction. Yet, it was his earliest studies into midlatitude MGWs and their significant impacts on hazardous weather that first inspired him. Such MGWs serve as the focus of this review, wherein we seek to pay tribute to his groundbreaking contributions, review our current understanding, and highlight critical open science issues. Chief among such issues is the nature of MGW amplification through feedback with moist convection, which continues to elude a complete understanding. The pressing nature of this subject is underscored by the continued failure of operational numerical forecast models to adequately predict most large-amplitude MGW events. Further research into such issues therefore presents a valuable opportunity to improve the understanding and forecasting of this high-impact weather phenomenon, and in turn, to preserve the spirit of Zhang’s dedication to this subject.

Full access