Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: Justin R. Minder x
  • Refine by Access: All Content x
Clear All Modify Search
Justin R. Minder

Abstract

Controls on the sensitivity of mountain snowpack accumulation to climate warming (λS ) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade Mountains under current and warmed climates. Both models are forced from sounding observations. The first model uses the linear theory (LT) model of orographic precipitation to predict precipitation as a function of the incoming flow characteristics and uses the sounding temperatures to estimate the elevation of the rain–snow boundary, called the melting level (ML). The second “ML model” uses only the ML from the sounding and assumptions of uniform and constant precipitation. Both models simulate increases in precipitation intensity and elevated storm MLs under climate warming. The LT model predicts a 14.8%–18.1% loss of Cascade snowfall per degree of warming, depending on the vertical structure of the warming. The loss of snowfall is significantly greater, 19.4%–22.6%, if precipitation increases are neglected. Comparing the two models shows that the predominant control on λS is the relationship between the distribution of storm MLs and the distribution of topographic area with elevation. Although increases in precipitation due to warming may act to moderate λS , the loss of snow accumulation area profoundly limits the ability of precipitation increases to maintain the snowpack under substantial climate warming (beyond 1°–2°C). Circulation changes may act to moderate or exacerbate the loss of mountain snowpack under climate change via impacts on orographic precipitation enhancement.

Full access
Theodore W. Letcher
and
Justin R. Minder

Abstract

The snow albedo feedback (SAF) is an important climate feature of mountain regions with transient snow cover. In these regions, where patterns of snow cover are largely determined by the underlying terrain, the SAF is highly variable in space and time. Under climate warming, these variations may affect the development of diurnal mountain winds either by altering the thermal contrast between high and low elevations or by increasing boundary layer mixing. In this study, high-resolution regional climate modeling experiments are used to investigate and characterize how the SAF modulates changes in diurnal wind systems in the Rocky Mountains of Colorado and Utah during the spring when SAF strength is at a maximum. Two separate 7-yr pseudo–global warming climate change experiments with differing model configurations are examined. An evaluation of the control simulations against a mesoscale network of observations reveals that the models perform reasonably well at simulating diurnal mountain winds within this region. In the experiment with a strong SAF, there is a clear increase in the strength of daytime upslope flow under climate warming, which leads to increased convergence and cloudiness near the snow margin. Additionally, there is a decrease in the strength of nighttime downslope flows. In the simulation with a weaker SAF, the results are generally similar but less pronounced. In both experiments, an altered thermal contrast, rather than increased boundary layer mixing, appears to be the primary mechanism driving changes in diurnal mountain wind systems in this region.

Full access
Theodore W. Letcher
and
Justin R. Minder

Abstract

The Front Range mountain–plain circulation (FRMC) is a large-scale diurnally driven wind system that occurs east of the Colorado Rocky Mountains in the United States and affects the weather both in the Rocky Mountains and Great Plains. As the climate warms, the snow albedo feedback will amplify the warming response in the Rocky Mountains during the spring, increasing the thermal contrast that drives the FRMC. In this study, the authors perform a 7-yr pseudo–global warming (PGW) regional climate change experiment along with an idealized PGW “fixed albedo” experiment to test the sensitivity of the FRMC to the snow albedo feedback (SAF). The authors find a mean increase in the springtime FRMC strength in the PGW experiment that is primarily driven by the snow albedo feedback. Furthermore, interannual variability of changes in FRMC strength is strongly influenced by interannual variability in the SAF. An additional case study experiment configured with a much higher resolution is performed to examine the finescale details of how the SAF and the FRMC interact. This experiment includes a passive tracer to investigate subsequent impacts on pollution transport. The case study reveals that loss of snow cover causes an increase in the strength of the FRMC. Advection by the strengthened FRMC increases the concentration of tracers emitted over the Great Plains in the boundary layer over the Front Range mountains.

Full access
Justin R. Minder
and
David E. Kingsmill

Abstract

Observations from several mountain ranges reveal that the height of the transition from snowfall to rainfall, the snow line, can intersect the terrain at an elevation hundreds of meters below its elevation in the free air upwind. This mesoscale lowering of the snow line affects both the accumulation of mountain snowpack and the generation of storm runoff. A unique multiyear view of this behavior based on data from profiling radars in the northern Sierra Nevada deployed as part of NOAA’s Hydrometeorology Testbed is presented. Data from 3 yr of storms show that the mesoscale lowering of the snow line is a feature common to nearly all major storms, with an average snow line drop of 170 m.

The mesoscale behavior of the snow line is investigated in detail for a major storm over the northern Sierra Nevada. Comparisons of observations from sondes and profiling radars with high-resolution simulations using the Weather Research and Forecasting model (WRF) show that WRF is capable of reproducing the observed lowering of the snow line in a realistic manner. Modeling results suggest that radar profiler networks may substantially underestimate the lowering by failing to resolve horizontal snow line variations in close proximity to the mountainside. Diagnosis of model output indicates that pseudoadiabatic processes related to orographic blocking, localized cooling due to melting of orographically enhanced snowfall, and spatial variations in hydrometeor melting distance all play important roles. Simulations are surprisingly insensitive to model horizontal resolution but have important sensitivities to microphysical parameterization.

Full access
Theodore W. Letcher
and
Justin R. Minder

Abstract

Midlatitude mountain regions are particularly sensitive to climate change because of an active snow albedo feedback (SAF). Here, the SAF is characterized and quantified over the complex terrain of the Colorado Headwaters region using high-resolution regional climate model simulations. A pair of 7-yr control and pseudo-global warming simulations is used to study the regional climate response to a large-scale thermodynamic climate perturbation. Warming is strongly enhanced in regions of snow loss by as much as 5°C. Linear feedback analysis is used to quantify the strength of the SAF within the Headwaters region. The strength of the SAF reaches a maximum value of 4 W m−2 K−1 during April when snow loss coincides with strong incoming solar radiation. Simulations using 4- and 12-km horizontal grid spacing show good agreement in the strength and timing of the SAF, whereas a 36-km simulation shows discrepancies that are tied to differences in snow accumulation and ablation caused by smoother terrain. Energy budget analysis shows that transport by atmospheric circulations acts as a negative feedback to regional warming, damping the effects of the SAF. On the mesoscale, the SAF nonlocally enhances warming in locations with no snow, and enhances snowmelt in locations that do not experience snow cover change. The methods presented here can be used generally to quantify the role of the SAF in simulated regional climate change, illuminating the causes of differences in climate warming between models and regions.

Full access
Oscar Chimborazo
,
Justin R. Minder
, and
Mathias Vuille

Abstract

Many mountain regions around the world are exposed to enhanced warming when compared to their surroundings, threatening key environmental services provided by mountains. Here we investigate this effect, known as elevation-dependent warming (EDW), in the Andes of Ecuador, using observations and simulations with the Weather Research and Forecasting (WRF) Model. EDW is discernible in observations of mean and maximum temperature in the Andes of Ecuador, but large uncertainties remain due to considerable data gaps in both space and time. WRF simulations of present-day (1986–2005) and future climate (RCP4.5 and RCP8.5 for 2041–60) reveal a very distinct EDW signal, with different rates of warming on the eastern and western slopes. This EDW effect is the combined result of multiple feedback mechanisms that operate on different spatial scales. Enhanced upper-tropospheric warming projects onto surface temperature on both sides of the Andes. In addition, changes in the zonal mean midtropospheric circulation lead to enhanced subsidence and warming over the western slopes at high elevation. The increased subsidence also induces drying, reduces cloudiness, and results in enhanced net surface radiation receipts, further contributing to stronger warming. Finally, the highest elevations are also affected by the snow-albedo feedback, due to significant reductions in snow cover by the middle of the twenty-first century. While these feedbacks are more pronounced in the high-emission scenario RCP8.5, our results indicate that high elevations in Ecuador will continue to warm at enhanced rates in the twenty-first century, regardless of emission scenario.

Significance Statement

Mountains are often projected to experience stronger warming than their surrounding lowlands going forward, a phenomenon known as elevation-dependent warming (EDW), which can threaten high-altitude ecosystems and lead to accelerated glacier retreat. We investigate the mechanisms associated with EDW in the Andes of Ecuador using both observations and model simulations for the present and the future. A combination of factors amplify warming at mountain tops, including a stronger warming high in the atmosphere, reduced cloudiness, and a reduction of snow and ice at high elevations. The latter two factors also favor enhanced absorption of sunlight, which promotes warming. The degree to which this warming is enhanced at high elevations in the future depends on the greenhouse gas emission pathway.

Full access
Justin R. Minder
,
Dale R. Durran
, and
Gerard H. Roe

Abstract

Observations show that on a mountainside the boundary between snow and rain, the snow line, is often located at an elevation hundreds of meters below its elevation in the free air upwind. The processes responsible for this mesoscale lowering of the snow line are examined in semi-idealized simulations with a mesoscale numerical model and in simpler theoretical models. Spatial variations in latent cooling from melting precipitation, in adiabatic cooling from vertical motion, and in the melting distance of frozen hydrometeors are all shown to make important contributions. The magnitude of the snow line drop, and the relative importance of the responsible processes, depends on properties of the incoming flow and terrain geometry. Results suggest that the depression of the snow line increases with increasing temperature, a relationship that, if present in nature, could act to buffer mountain hydroclimates against the impacts of climate warming. The simulated melting distance, and hence the snow line, depends substantially on the choice of microphysical parameterization, pointing to an important source of uncertainty in simulations of mountain snowfall.

Full access
Thomas M. Gowan
,
W. James Steenburgh
, and
Justin R. Minder

Abstract

The distribution and intensity of lake- and sea-effect (hereafter lake-effect) precipitation are strongly influenced by the mode of landfalling lake-effect systems. Here, we used idealized large-eddy simulations to investigate the downstream evolution and coastal-to-inland transition of two lake-effect modes: 1) a long-lake-axis-parallel (LLAP) band generated by an oval body of water (hereafter lake; e.g., Lake Ontario) and 2) broad-coverage, open-cell convection generated by an open lake (e.g., Sea of Japan). Under identical atmospheric conditions and lake-surface temperatures, the oval lake generates a LLAP band with heavy precipitation along the midlake axis, whereas the open lake generates broad-coverage, open-cell convection with widespread, light accumulations. Over the oval lake, the LLAP band features a thermally forced and diabatically enhanced cross-band secondary circulation with convergence and ascent over the midlake axis. Downstream of the lake, flanking airstreams that avoid lake modification merge beneath the band where they experience sublimational cooling, producing a cold pool. At the upstream edge of the cold pool, a coastal baroclinic zone forms. Above this zone, ascent and hydrometeor mass growth are maximized, resulting in an inland precipitation maximum due to subsequent hydrometeor transport and fallout. Over the open lake, individual open cells grow larger and stronger with overwater extent, but a convective-to-stratiform transition begins at the coast. Here, convective vigor decays, mesoscale ascent begins, and enhanced hydrometeor growth results in an inland precipitation maximum. These results highlight variations in the coastal-to-inland transition of lake-effect systems that ultimately influence the distribution and intensity of lake-effect precipitation.

Full access
Alison D. Nugent
,
Ronald B. Smith
, and
Justin R. Minder

Abstract

This study compares observations from the Dominica Experiment (DOMEX) field campaign with 3D and 2D Weather Research and Forecasting Model (WRF) simulations to understand how ambient upstream wind speed controls the transition from thermally to mechanically forced moist orographic convection. The environment is a conditionally unstable, tropical atmosphere with shallow trade wind cumulus clouds. Three flow indices are defined to quantify the convective transition: horizontal divergence aloft, cloud location, and island surface temperature. As wind speed increases, horizontal airflow divergence from plume detrainment above the mountain changes to convergence associated with plunging flow, convective clouds relocate from the leeward to the windward side of the mountain as mechanically triggered convection takes over, and the daytime mountaintop temperature decreases because of increased ventilation and cloud shading. Possible mechanisms by which wind speed controls island precipitation are also discussed. The result is a clearer understanding of orographic convection in the tropics.

Full access
Thomas M. Gowan
,
W. James Steenburgh
, and
Justin R. Minder

Abstract

Landfalling lake- and sea-effect (hereafter lake-effect) systems often interact with orography, altering the distribution and intensity of precipitation, which frequently falls as snow. In this study, we examine the influence of orography on two modes of lake-effect systems: long-lake-axis-parallel (LLAP) bands and broad-coverage, open-cell convection. Specifically, we generate idealized large-eddy simulations of a LLAP band produced by an oval lake and broad-coverage, open-cell convection produced by an open lake (i.e., without flanking shorelines) with a downstream coastal plain, 500-m peak, and 2000-m ridge. Without terrain, the LLAP band intersects a coastal baroclinic zone over which ascent and hydrometeor mass growth are maximized, with transport and fallout producing an inland precipitation maximum. The 500-m peak does not significantly alter this structure, but slightly enhances precipitation due to orographic ascent, increased hydrometeor mass growth, and reduced subcloud sublimation. In contrast, a 2000-m ridge disrupts the band by blocking the continental flow that flanks the coastlines. This, combined with differential surface heating between the lake and land, leads to low-level flow reversal, shifting the coastal baroclinic zone and precipitation maximum offshore. In contrast, the flow moves over the terrain in open lake, open-cell simulations. Over the 500-m peak, this yields an increase in the frequency of weaker (<1 m s−1) updrafts and weak precipitation enhancement, although stronger updrafts decline. Over the 2000-m ridge, however, buoyancy and convective vigor increase dramatically, contributing to an eightfold increase in precipitation. Overall, these results highlight differences in the influence of orography on two common lake-effect modes.

Significance Statement

Landfalling lake- and sea-effect snowstorms frequently interact with hills, mountains, and upland regions, altering the distribution and intensity of snowfall. Using high-resolution numerical modeling with simplified lake shapes and terrain features, we illustrate how terrain features affect two common types of lake-effect storms and why long-lake-axis-parallel (LLAP) bands can feature high precipitation rates but weaker orographic enhancement than broad-coverage, open-cell convection.

Restricted access