Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: K. A. Murphy x
  • All content x
Clear All Modify Search
Martin J. Murphy, John A. Cramer, and Ryan K. Said

Abstract

The U.S. National Lightning Detection Network (NLDN) underwent a complete sensor upgrade in 2013 followed by a central processor upgrade in 2015. These upgrades produced about a factor-of-5 improvement in the detection efficiency of cloud lightning flashes and about one additional cloud pulse geolocated per flash. However, they also reaggravated a historical problem with the tendency to misclassify a population of low-current positive discharges as cloud-to-ground strokes when, in fact, most are probably cloud pulses. Furthermore, less than 0.1% of events were poorly geolocated because the contributing sensor data were either improperly associated or simply underutilized by the geolocation algorithm. To address these issues, Vaisala developed additional improvements to the central processing system, which became operational on 7 November 2018. This paper describes updates to the NLDN between 2013 and 2018 and then focuses on the effects of classification algorithm changes and a simple means to normalize classification across upgrades.

Open access
R. E. Pandya, D. R. Smith, M. K. Ramamurthy, P. J. Croft, M. J. Hayes, K. A. Murphy, J. D. McDonnell, R. M. Johnson, and H. A. Friedman

The 11th American Meteorological Society (AMS) Education Symposium was held from 13 to 15 January 2002 in Orlando, Florida, as part of the 82nd Annual Meeting of the AMS. The theme of the symposium was “creating opportunities in educational outreach in the atmospheric and related sciences.” Drawing from traditional strengths in meteorology and numerous national recommendations, the presentations and posters of the symposium highlighted three opportunities for reform. These opportunities build on partnerships between diverse educational stakeholders, efforts to make science education more like scientific practice, and strategies that place the atmospheric sciences within a larger, multidisciplinary context that includes oceanography, hydrology, and earth-system science.

Full access
R. Knutti, M. R. Allen, P. Friedlingstein, J. M. Gregory, G. C. Hegerl, G. A. Meehl, M. Meinshausen, J. M. Murphy, G.-K. Plattner, S. C. B. Raper, T. F. Stocker, P. A. Stott, H. Teng, and T. M. L. Wigley

Abstract

Quantification of the uncertainties in future climate projections is crucial for the implementation of climate policies. Here a review of projections of global temperature change over the twenty-first century is provided for the six illustrative emission scenarios from the Special Report on Emissions Scenarios (SRES) that assume no policy intervention, based on the latest generation of coupled general circulation models, climate models of intermediate complexity, and simple models, and uncertainty ranges and probabilistic projections from various published methods and models are assessed. Despite substantial improvements in climate models, projections for given scenarios on average have not changed much in recent years. Recent progress has, however, increased the confidence in uncertainty estimates and now allows a better separation of the uncertainties introduced by scenarios, physical feedbacks, carbon cycle, and structural uncertainty. Projection uncertainties are now constrained by observations and therefore consistent with past observed trends and patterns. Future trends in global temperature resulting from anthropogenic forcing over the next few decades are found to be comparably well constrained. Uncertainties for projections on the century time scale, when accounting for structural and feedback uncertainties, are larger than captured in single models or methods. This is due to differences in the models, the sources of uncertainty taken into account, the type of observational constraints used, and the statistical assumptions made. It is shown that as an approximation, the relative uncertainty range for projected warming in 2100 is the same for all scenarios. Inclusion of uncertainties in carbon cycle–climate feedbacks extends the upper bound of the uncertainty range by more than the lower bound.

Full access
T. Eidhammer, P. J. DeMott, A. J. Prenni, M. D. Petters, C. H. Twohy, D. C. Rogers, J. Stith, A. Heymsfield, Z. Wang, K. A. Pratt, K. A. Prather, S. M. Murphy, J. H. Seinfeld, R. Subramanian, and S. M. Kreidenweis

Abstract

The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case.

Full access
Melanie Wetzel, David Dempsey, Sandra Nilsson, Mohan Ramamurthy, Steve Koch, Jennie Moody, David Knight, Charles Murphy, David Fulker, Mary Marlino, Michael Morgan, Doug Yarger, Dan Vietor, and Greg Cox

An education-oriented workshop for college faculty in the atmospheric and related sciences was held in Boulder, Colorado, during June 1997 by three programs of the University Corporation for Atmospheric Research. The objective of this workshop was to provide faculty with hands-on training in the use of Web-based instructional methods for specific application to the teaching of satellite remote sensing in their subject areas. More than 150 faculty and associated scientists participated, and postworkshop evaluation showed it to have been a very successful integration of information and activities related to computer-based instruction, educational principles, and scientific lectures.

Full access
P. W. Thorne, R. J. Allan, L. Ashcroft, P. Brohan, R. J. H Dunn, M. J. Menne, P. R. Pearce, J. Picas, K. M. Willett, M. Benoy, S. Bronnimann, P. O. Canziani, J. Coll, R. Crouthamel, G. P. Compo, D. Cuppett, M. Curley, C. Duffy, I. Gillespie, J. Guijarro, S. Jourdain, E. C. Kent, H. Kubota, T. P. Legg, Q. Li, J. Matsumoto, C. Murphy, N. A. Rayner, J. J. Rennie, E. Rustemeier, L. C. Slivinski, V. Slonosky, A. Squintu, B. Tinz, M. A. Valente, S. Walsh, X. L. Wang, N. Westcott, K. Wood, S. D. Woodruff, and S. J. Worley

Abstract

Observations are the foundation for understanding the climate system. Yet, currently available land meteorological data are highly fractured into various global, regional, and national holdings for different variables and time scales, from a variety of sources, and in a mixture of formats. Added to this, many data are still inaccessible for analysis and usage. To meet modern scientific and societal demands as well as emerging needs such as the provision of climate services, it is essential that we improve the management and curation of available land-based meteorological holdings. We need a comprehensive global set of data holdings, of known provenance, that is truly integrated both across essential climate variables (ECVs) and across time scales to meet the broad range of stakeholder needs. These holdings must be easily discoverable, made available in accessible formats, and backed up by multitiered user support. The present paper provides a high-level overview, based upon broad community input, of the steps that are required to bring about this integration. The significant challenge is to find a sustained means to realize this vision. This requires a long-term international program. The database that results will transform our collective ability to provide societally relevant research, analysis, and predictions in many weather- and climate-related application areas across much of the globe.

Open access
H. J. S. Fernando, J. Mann, J. M. L. M. Palma, J. K. Lundquist, R. J. Barthelmie, M. Belo-Pereira, W. O. J. Brown, F. K. Chow, T. Gerz, C. M. Hocut, P. M. Klein, L. S. Leo, J. C. Matos, S. P. Oncley, S. C. Pryor, L. Bariteau, T. M. Bell, N. Bodini, M. B. Carney, M. S. Courtney, E. D. Creegan, R. Dimitrova, S. Gomes, M. Hagen, J. O. Hyde, S. Kigle, R. Krishnamurthy, J. C. Lopes, L. Mazzaro, J. M. T. Neher, R. Menke, P. Murphy, L. Oswald, S. Otarola-Bustos, A. K. Pattantyus, C. Veiga Rodrigues, A. Schady, N. Sirin, S. Spuler, E. Svensson, J. Tomaszewski, D. D. Turner, L. van Veen, N. Vasiljević, D. Vassallo, S. Voss, N. Wildmann, and Y. Wang

Abstract

A grand challenge from the wind energy industry is to provide reliable forecasts on mountain winds several hours in advance at microscale (∼100 m) resolution. This requires better microscale wind-energy physics included in forecasting tools, for which field observations are imperative. While mesoscale (∼1 km) measurements abound, microscale processes are not monitored in practice nor do plentiful measurements exist at this scale. After a decade of preparation, a group of European and U.S. collaborators conducted a field campaign during 1 May–15 June 2017 in Vale Cobrão in central Portugal to delve into microscale processes in complex terrain. This valley is nestled within a parallel double ridge near the town of Perdigão with dominant wind climatology normal to the ridges, offering a nominally simple yet natural setting for fundamental studies. The dense instrument ensemble deployed covered a ∼4 km × 4 km swath horizontally and ∼10 km vertically, with measurement resolutions of tens of meters and seconds. Meteorological data were collected continuously, capturing multiscale flow interactions from synoptic to microscales, diurnal variability, thermal circulation, turbine wake and acoustics, waves, and turbulence. Particularly noteworthy are the extensiveness of the instrument array, space–time scales covered, use of leading-edge multiple-lidar technology alongside conventional tower and remote sensors, fruitful cross-Atlantic partnership, and adaptive management of the campaign. Preliminary data analysis uncovered interesting new phenomena. All data are being archived for public use.

Open access