Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: K. Cady-Pereira x
  • Refine by Access: All Content x
Clear All Modify Search
K. E. Cady-Pereira, M. W. Shephard, D. D. Turner, E. J. Mlawer, S. A. Clough, and T. J. Wagner

Abstract

Accurate water vapor profiles from radiosondes are essential for long-term climate prediction, weather prediction, validation of remote sensing retrievals, and other applications. The Vaisala RS80, RS90, and RS92 radiosondes are among the more commonly deployed radiosondes in the world. However, numerous investigators have shown that the daytime water vapor profiles measured by these instruments present a significant dry bias due to the solar heating of the humidity sensor. This bias in the column-integrated precipitable water vapor (PWV), along with variability due to calibration, can be removed by scaling the humidity profile to agree with the PWV retrieved from a microwave radiometer (MWR), as has been demonstrated by several previous studies. Infrared radiative closure analyses have shown that the MWR PWV does not present daytime versus nighttime differences; thus, scaling by the MWR is a possible approach for removing the daytime dry bias. However, MWR measurements are not routinely available at all radiosonde launch sites. Starting from a long-term series of sonde and MWR PWV measurements from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site, the authors have developed a simple correction to the column-integrated sonde PWV, derived from an analysis of the ratio of the MWR and sonde measurements; this correction is a function of the atmospheric transmittance as determined by the solar zenith angle, and it effectively removes the daytime dry bias at all solar zenith angles. The correction was validated by successfully applying it to an independent dataset from the ARM tropical western Pacific (TWP) site.

Full access
D. D. Turner, A. M. Vogelmann, R. T. Austin, J. C. Barnard, K. Cady-Pereira, J. C. Chiu, S. A. Clough, C. Flynn, M. M. Khaiyer, J. Liljegren, K. Johnson, B. Lin, C. Long, A. Marshak, S. Y. Matrosov, S. A. McFarlane, M. Miller, Q. Min, P. Minimis, W. O'Hirok, Z. Wang, and W. Wiscombe

Many of the clouds important to the Earth's energy balance, from the Tropics to the Arctic, contain small amounts of liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP), when the LWP is small (i.e., < 100 g m−2; clouds with LWP less than this threshold will be referred to as “thin”). Thus, the radiative properties of these thin liquid water clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are thin, potentially mixed phase, and often broken (i.e., have large 3D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison used data collected at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site and included 18 different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast stratocumulus, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future research.)

Full access