Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: K. Lindsay x
  • All content x
Clear All Modify Search
T. De Groeve, J. Thielen-del Pozo, R. Brakenridge, R. Adler, L. Alfieri, D. Kull, F. Lindsay, O. Imperiali, F. Pappenberger, R. Rudari, P. Salamon, N. Villars, and K. Wyjad
Full access
Vivek K. Arora, George J. Boer, Pierre Friedlingstein, Michael Eby, Chris D. Jones, James R. Christian, Gordon Bonan, Laurent Bopp, Victor Brovkin, Patricia Cadule, Tomohiro Hajima, Tatiana Ilyina, Keith Lindsay, Jerry F. Tjiputra, and Tongwen Wu

Abstract

The magnitude and evolution of parameters that characterize feedbacks in the coupled carbon–climate system are compared across nine Earth system models (ESMs). The analysis is based on results from biogeochemically, radiatively, and fully coupled simulations in which CO2 increases at a rate of 1% yr−1. These simulations are part of phase 5 of the Coupled Model Intercomparison Project (CMIP5). The CO2 fluxes between the atmosphere and underlying land and ocean respond to changes in atmospheric CO2 concentration and to changes in temperature and other climate variables. The carbon–concentration and carbon–climate feedback parameters characterize the response of the CO2 flux between the atmosphere and the underlying surface to these changes. Feedback parameters are calculated using two different approaches. The two approaches are equivalent and either may be used to calculate the contribution of the feedback terms to diagnosed cumulative emissions. The contribution of carbon–concentration feedback to diagnosed cumulative emissions that are consistent with the 1% increasing CO2 concentration scenario is about 4.5 times larger than the carbon–climate feedback. Differences in the modeled responses of the carbon budget to changes in CO2 and temperature are seen to be 3–4 times larger for the land components compared to the ocean components of participating models. The feedback parameters depend on the state of the system as well the forcing scenario but nevertheless provide insight into the behavior of the coupled carbon–climate system and a useful common framework for comparing models.

Full access
S. G. Yeager, G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl, A. R. Karspeck, K. Lindsay, M. C. Long, H. Teng, and N. S. Lovenduski

Abstract

The objective of near-term climate prediction is to improve our fore-knowledge, from years to a decade or more in advance, of impactful climate changes that can in general be attributed to a combination of internal and externally forced variability. Predictions initialized using observations of past climate states are tested by comparing their ability to reproduce past climate evolution with that of uninitialized simulations in which the same radiative forcings are applied. A new set of decadal prediction (DP) simulations has recently been completed using the Community Earth System Model (CESM) and is now available to the community. This new large-ensemble (LE) set (CESM-DPLE) is composed of historical simulations that are integrated forward for 10 years following initialization on 1 November of each year between 1954 and 2015. CESM-DPLE represents the “initialized” counterpart to the widely studied CESM Large Ensemble (CESM-LE); both simulation sets have 40-member ensembles, and they use identical model code and radiative forcings. Comparing CESM-DPLE to CESM-LE highlights the impacts of initialization on prediction skill and indicates that robust assessment and interpretation of DP skill may require much larger ensembles than current protocols recommend. CESM-DPLE exhibits significant and potentially useful prediction skill for a wide range of fields, regions, and time scales, and it shows widespread improvement over simpler benchmark forecasts as well as over a previous initialized system that was submitted to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The new DP system offers new capabilities that will be of interest to a broad community pursuing Earth system prediction research.

Open access
James Wilczak, Cathy Finley, Jeff Freedman, Joel Cline, Laura Bianco, Joseph Olson, Irina Djalalova, Lindsay Sheridan, Mark Ahlstrom, John Manobianco, John Zack, Jacob R. Carley, Stan Benjamin, Richard Coulter, Larry K. Berg, Jeffrey Mirocha, Kirk Clawson, Edward Natenberg, and Melinda Marquis

Abstract

The Wind Forecast Improvement Project (WFIP) is a public–private research program, the goal of which is to improve the accuracy of short-term (0–6 h) wind power forecasts for the wind energy industry. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that included the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models and, second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the United States (the upper Great Plains and Texas) and included 12 wind profiling radars, 12 sodars, several lidars and surface flux stations, 184 instrumented tall towers, and over 400 nacelle anemometers. Results demonstrate that a substantial reduction (12%–5% for forecast hours 1–12) in power RMSE was achieved from the combination of improved numerical weather prediction models and assimilation of new observations, equivalent to the previous decade’s worth of improvements found for low-level winds in NOAA/National Weather Service (NWS) operational weather forecast models. Data-denial experiments run over select periods of time demonstrate that up to a 6% improvement came from the new observations. Ensemble forecasts developed by the private sector partners also produced significant improvements in power production and ramp prediction. Based on the success of WFIP, DOE is planning follow-on field programs.

Full access
Burkely T. Gallo, Jamie K. Wolff, Adam J. Clark, Israel Jirak, Lindsay R. Blank, Brett Roberts, Yunheng Wang, Chunxi Zhang, Ming Xue, Tim Supinie, Lucas Harris, Linjiong Zhou, and Curtis Alexander

Abstract

Verification methods for convection-allowing models (CAMs) should consider the finescale spatial and temporal detail provided by CAMs, and including both neighborhood and object-based methods can account for displaced features that may still provide useful information. This work explores both contingency table–based verification techniques and object-based verification techniques as they relate to forecasts of severe convection. Two key fields in severe weather forecasting are investigated: updraft helicity (UH) and simulated composite reflectivity. UH is used to generate severe weather probabilities called surrogate severe fields, which have two tunable parameters: the UH threshold and the smoothing level. Probabilities computed using the UH threshold and smoothing level that give the best area under the receiver operating curve result in very high probabilities, while optimizing the parameters based on the Brier score reliability component results in much lower probabilities. Subjective ratings from participants in the 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiment (SFE) provide a complementary evaluation source. This work compares the verification methodologies in the context of three CAMs using the Finite-Volume Cubed-Sphere Dynamical Core (FV3), which will be the foundation of the U.S. Unified Forecast System (UFS). Three agencies ran FV3-based CAMs during the five-week 2018 SFE. These FV3-based CAMs are verified alongside a current operational CAM, the High-Resolution Rapid Refresh version 3 (HRRRv3). The HRRR is planned to eventually use the FV3 dynamical core as part of the UFS; as such evaluations relative to current HRRR configurations are imperative to maintaining high forecast quality and informing future implementation decisions.

Restricted access
P. Friedlingstein, P. Cox, R. Betts, L. Bopp, W. von Bloh, V. Brovkin, P. Cadule, S. Doney, M. Eby, I. Fung, G. Bala, J. John, C. Jones, F. Joos, T. Kato, M. Kawamiya, W. Knorr, K. Lindsay, H. D. Matthews, T. Raddatz, P. Rayner, C. Reick, E. Roeckner, K.-G. Schnitzler, R. Schnur, K. Strassmann, A. J. Weaver, C. Yoshikawa, and N. Zeng

Abstract

Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C.

All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.

Full access
J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster, S. C. Bates, G. Danabasoglu, J. Edwards, M. Holland, P. Kushner, J.-F. Lamarque, D. Lawrence, K. Lindsay, A. Middleton, E. Munoz, R. Neale, K. Oleson, L. Polvani, and M. Vertenstein

Abstract

While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Early results demonstrate the substantial influence of internal climate variability on twentieth- to twenty-first-century climate trajectories. Global warming hiatus decades occur, similar to those recently observed. Internal climate variability alone can produce projection spread comparable to that in CMIP5. Scientists and stakeholders can use CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change.

Full access
James W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, Jennifer E. Kay, P. J. Kushner, J.-F. Lamarque, W. G. Large, D. Lawrence, K. Lindsay, W. H. Lipscomb, M. C. Long, N. Mahowald, D. R. Marsh, R. B. Neale, P. Rasch, S. Vavrus, M. Vertenstein, D. Bader, W. D. Collins, J. J. Hack, J. Kiehl, and S. Marshall

The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for Earth system studies, making it a true community tool. This article describes this Earth system model and its various possible configurations, and highlights a number of its scientific capabilities.

Full access
Jason Beringer, Jorg Hacker, Lindsay B. Hutley, Ray Leuning, Stefan K. Arndt, Reza Amiri, Lutz Bannehr, Lucas A. Cernusak, Samantha Grover, Carol Hensley, Darren Hocking, Peter Isaac, Hizbullah Jamali, Kasturi Kanniah, Stephen Livesley, Bruno Neininger, Kyaw Tha Paw U, William Sea, Dennis Straten, Nigel Tapper, Richard Weinmann, Stephen Wood, and Steve Zegelin

Savannas are highly significant global ecosystems that consist of a mix of trees and grasses and that are highly spatially varied in their physical structure, species composition, and physiological function (i.e., leaf area and function, stem density, albedo, and roughness). Variability in ecosystem characteristics alters biophysical and biogeochemical processes that can affect regional to global circulation patterns, which are not well characterized by land surface models. We initiated a multidisciplinary field campaign called Savanna Patterns of Energy and Carbon Integrated across the Landscape (SPECIAL) during the dry season in Australian savannas to understand the spatial patterns and processes of land surface–atmosphere exchanges (radiation, heat, moisture, CO2, and other trace gasses). We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux transects, aircraft boundary layer budgets, and satellite remote sensing to quantify the spatial variability across a continental-scale rainfall gradient (transect). We found that the structure of vegetation changed along the transect in response to declining average rainfall. Tree basal area decreased from 9.6 m2 ha−1 in the coastal woodland savanna (annual rainfall 1,714 mm yr−1) to 0 m2 ha−1 at the grassland site (annual rainfall 535 mm yr−1), with dry-season green leaf area index (LAI) ranging from 1.04 to 0, respectively. Leaf-level measurements showed that photosynthetic properties were similar along the transect. Flux tower measurements showed that latent heat fluxes (LEs) decreased from north to south with resultant changes in the Bowen ratios (H/LE) from a minimum of 1.7 to a maximum of 15.8, respectively. Gross primary productivity, net carbon dioxide exchange, and LE showed similar declines along the transect and were well correlated with canopy LAI, and fluxes were more closely coupled to structure than floristic change.

Full access
Gijs de Boer, Constantin Diehl, Jamey Jacob, Adam Houston, Suzanne W. Smith, Phillip Chilson, David G. Schmale III, Janet Intrieri, James Pinto, Jack Elston, David Brus, Osku Kemppinen, Alex Clark, Dale Lawrence, Sean C. C. Bailey, Michael P. Sama, Amy Frazier, Christopher Crick, Victoria Natalie, Elizabeth Pillar-Little, Petra Klein, Sean Waugh, Julie K. Lundquist, Lindsay Barbieri, Stephan T. Kral, Anders A. Jensen, Cory Dixon, Steven Borenstein, Daniel Hesselius, Kathleen Human, Philip Hall, Brian Argrow, Troy Thornberry, Randy Wright, and Jason T. Kelly

ABSTRACT

Because unmanned aircraft systems (UAS) offer new perspectives on the atmosphere, their use in atmospheric science is expanding rapidly. In support of this growth, the International Society for Atmospheric Research Using Remotely-Piloted Aircraft (ISARRA) has been developed and has convened annual meetings and “flight weeks.” The 2018 flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation–A Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE), involved a 1-week deployment to Colorado’s San Luis Valley. Between 14 and 20 July 2018 over 100 students, scientists, engineers, pilots, and outreach coordinators conducted an intensive field operation using unmanned aircraft and ground-based assets to develop datasets, community, and capabilities. In addition to a coordinated “Community Day” which offered a chance for groups to share their aircraft and science with the San Luis Valley community, LAPSE-RATE participants conducted nearly 1,300 research flights totaling over 250 flight hours. The measurements collected have been used to advance capabilities (instrumentation, platforms, sampling techniques, and modeling tools), conduct a detailed system intercomparison study, develop new collaborations, and foster community support for the use of UAS in atmospheric science.

Full access