Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: K. Walsh x
  • Refine by Access: All Content x
Clear All Modify Search
K. C. Nguyen
and
K. J. E. Walsh

Abstract

Tropical cyclone–like vortices (TCLVs) in the South Pacific Ocean are studied using the CSIRO Division of Atmospheric Research Limited Area Model (DARLAM), nested in a transient carbon dioxide simulation of the CSIRO Mark2 global coupled GCM. This GCM is able to simulate El Niño–Southern Oscillation (ENSO)–like interannual variations, although the amplitude of these is considerably smaller than observed. A comparison is made between observed geographical variations of cyclone formation caused by ENSO and similar variations simulated by DARLAM. An analysis of the simulated interannual variability of TCLV formation suggests that under La Niña conditions TCLVs tend to occur closer to the coast of Australia, whereas under El Niño conditions TCLVs tend to occur farther eastward, in agreement with observations. Under enhanced greenhouse conditions, this geographical variation continues. In addition, the total number of TCLVs in the South Pacific region decreases in a warmer world. As in previous simulations using DARLAM, there is a southward movement in TCLV occurrence under enhanced greenhouse conditions, although this has not been simulated to date by other climate models. The GCM simulation of sea surface temperatures also exhibits coherent decadal variability that has some similarities to the observed ENSO-like decadal variability. This variability forces decadal variations in TCLV formation that, like ENSO-forced variations, have geographically distinct centers of action.

Full access
S. Sharmila
and
K. J. E. Walsh

Abstract

Significant advances have been made in understanding the key climate factors responsible for tropical cyclone (TC) activity, yet any theory that estimates likelihood of observed TC formation rates from mean climate states remains elusive. The present study investigates how the extremes of observed TC genesis (TCG) frequency during peak TC seasons are interrelated with distinct changes in the large-scale climate conditions over different ocean basins using the global International Best Track Archive for Climate Stewardship (IBTrACS) dataset and ERA-Interim for the period 1979–2014. Peak TC seasons with significantly high and low TCG frequency are identified for five major ocean basins, and their substantial spatial changes in TCG are noted with regionally distinct differences. To explore the possible climate link behind such changes, a suite of potentially relevant dynamic and thermodynamic climate conditions is analyzed. Results indicate that the observed changes in extreme TCG frequency are closely linked with distinct dominance of specific dynamic and thermodynamic climate conditions over different regions. While the combined influences of dynamic and thermodynamic climate conditions are found to be necessary for modulating TC formation rate over the North Atlantic, eastern Pacific, and southern Indian Oceans, significant changes in large-scale dynamic conditions appear to solely control the TCG frequency over the western Pacific and South Pacific basins. Estimation of the fractional changes in genesis-weighted climate conditions also indicates the coherent but distinct competing effects of different climate conditions on TCG frequency. The present study further points out the need for revising the existing genesis indices for estimating TCG frequency over individual basins.

Full access
J. R. Garratt
,
A. B. Pittock
, and
K. Walsh

Abstract

The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.

Full access
K. Aydin
,
S. H. Park
, and
T. M. Walsh

Abstract

Bistatic dual-polarization radar parameters at S- and C-band frequencies are simulated for rain and hail. The goal is to determine their potential for discriminating the two precipitation types and for estimating the parameters of an exponential size distribution for hail. Raindrops and hailstones are modeled as oblate spheroids with canting distributions representing their fall behavior. Three hailstone composition models are used to illustrate the effects of melting. Most of the bistatic radar parameters are significantly affected by the amount of liquid water in the hailstones, which may prove useful in determining the melting level from the vertical profiles of these parameters. For single-polarized transmission, such as vertical (v) or horizontal (h) polarization, the four bistatic radar parameters of interest are effective reflectivity factor (Z v or Z h), bistatic-to-backscattering reflectivity ratio (BBRv or BBRh), linear depolarization ratio (LDRv or LDRh), and magnitude of the correlation coefficient between the co- and cross-polarized signals (ρ v or ρ h). If the transmission is dual polarized, then in addition to these two sets of parameters, the bistatic differential reflectivity (Z DR) and the magnitude of the copolarized correlation coefficient (ρ hv) will be available. For low elevation angles of the transmitter and receiver the parameters resulting from h-polarized transmission may be difficult to measure near the bistatic azimuth angle of 90° due to very low signal levels. This may not be an issue for precipitation involving large hailstones.

When parameter pairs such as (LDRv, ρ v) and (BBRv, Z v) are plotted, it is observed that rain and hail tend to cluster in different regions on these planes. This indicates a potential for using bistatic radar parameters for differentiating rain from hail. Similar pairs are possible for h-polarization. Various other combinations of these parameters lead to similar results. The use of more than one pair of parameters and/or several bistatic receiver locations should enhance the level of confidence in the discrimination process. It should also be noted that in some cases there are regions on these planes where rain and hail overlap and discrimination may not always be possible.

Other than Z v and Z h, all of the bistatic radar parameters mentioned above are in the form of ratios. As a result, given an exponential size distribution, N 0 exp(−3.67D/D 0), they depend only on the median volume diameter D 0 and not on N 0. Assuming that the amount of liquid water and ice in the composition of the hailstones are known, the ratio parameters may be used for estimating D 0. However, among these parameters only BBRv and BBRh are negligibly affected by variations in the axial ratio and the mean orientation of hailstones, making them preferable for D 0 estimation. Once D 0 is obtained, N 0 may be estimated using Z v or Z h.

Full access
Lynn K. Shay
,
Edward J. Walsh
, and
Pen Chen Zhang

Abstract

During the third intensive observational period of the Surface Wave Dynamics Experiment (SWADE), an aircraft-based experiment was conducted on 5 March 1991 by deploying slow-fall airborne expendable current profilers (AXCPs) and airborne expendable bathythermographs (AXBTs) during a scanning radar altimeter (SRA) flight on the NASA NP-3A research aircraft. As the Gulf Stream moved into the SWADE domain in late February, maximum upper-layer currents of 1.98 m s−1 were observed in the core of the baroclinic jet where the vertical current shears were O(10−2 s−1). The SRA concurrently measured the sea surface topography, which was transformed into two-dimensional directional wave spectra at 5–6-km intervals along the flight tracks. The wave spectra indicated a local wave field with wavelengths of 40–60 m propagating southward between 120° and 180°, and a northward-moving swell field from 300° to 70° associated with significant wave heights of 2–4 m.

As the AXCP descended through the upper ocean, the profiler sensed orbital velocity amplitudes of 0.2–0.5 m s−1 due to low-frequency surface waves. These orbital velocities were isolated by fitting the observed current profiles to the three-layer model based on a monochromatic surface wave, including the steady and current shear terms within each layer. The depth-integrated differences between the observed and modeled velocity profiles were typically less than 3 cm s−1. For 17 of the 21 AXCP drop sites, the rms orbital velocity amplitudes, estimated by integrating the wave spectra over direction and frequency, were correlated at a level of 0.61 with those derived from the current profiles. The direction of wave propagation inferred from the AXCP-derived orbital velocities was in the same direction observed by the SRA. These mean wave directions were highly correlated (0.87) and differed only by about 5°.

Full access
F. Li
,
W. Large
,
W. Shaw
,
K. Davidson
, and
E. J. Walsh

Abstract

A case study of ocean radar backscatter dependence on near-surface wind and wind stress is presented using the data obtained on 18 February 1986 during the Frontal Air-Sea Interaction Experiment. Our interest in this case stems from the particular wind-wave conditions and their variations across a sharp sea surface temperature front. These are described. Most importantly, the small change in wind speed across the front cannot account for the large change in wind stress implying significant changes in the drag coefficient and surface roughness length. When compared with previous results, the corresponding changes in radar backscatter cross-section at 50° and 20° angles of incidence were consistent with the observed variations in wind stress, but inconsistent with both the mean wind and the equivalent neutral wind. Although not definitive, the results strengthen the hypothesis that radar backscatter is closely correlated to wind stress, and therefore, could be used for remote sensing of the wind stress itself over the global oceans.

Full access
K. J. E. Walsh
,
M. Fiorino
,
C. W. Landsea
, and
K. L. McInnes

Abstract

Objectively derived resolution-dependent criteria are defined for the detection of tropical cyclones in model simulations and observationally based analyses. These criteria are derived from the wind profiles of observed tropical cyclones, averaged at various resolutions. Both an analytical wind profile model and two-dimensional observed wind analyses are used. The results show that the threshold wind speed of an observed tropical cyclone varies roughly linearly with resolution. The criteria derived here are compared to the numerous different criteria previously employed in climate model simulations. The resulting method provides a simple means of comparing climate model simulations and reanalyses.

Full access
K. Stamnes
,
R. G. Ellingson
,
J. A. Curry
,
J. E. Walsh
, and
B. D. Zak

Abstract

Recent climate modeling results point to the Arctic as a region that is particularly sensitive to global climate change. The Arctic warming predicted by the models to result from the expected doubling of atmospheric carbon dioxide is two to three times the predicted mean global warming, and considerably greater than the warming predicted for the Antarctic. The North Slope of Alaska–Adjacent Arctic Ocean (NSA–AAO) Cloud and Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program is designed to collect data on temperature-ice-albedo and water vapor–cloud–radiation feedbacks, which are believed to be important to the predicted enhanced warming in the Arctic. The most important scientific issues of Arctic, as well as global, significance to be addressed at the NSA–AAO CART site are discussed, and a brief overview of the current approach toward, and status of, site development is provided. ARM radiometric and remote sensing instrumentation is already deployed and taking data in the perennial Arctic ice pack as part of the SHEBA (Surface Heat Budget of the Arctic Ocean) experiment. In parallel with ARM’s participation in SHEBA, the NSA–AAO facility near Barrow was formally dedicated on 1 July 1997 and began routine data collection early in 1998. This schedule permits the U.S. Department of Energy’s ARM Program, NASA’s Arctic Cloud program, and the SHEBA program (funded primarily by the National Science Foundation and the Office of Naval Research) to be mutually supportive. In addition, location of the NSA–AAO Barrow facility on National Oceanic and Atmospheric Administration land immediately adjacent to its Climate Monitoring and Diagnostic Laboratory Barrow Observatory includes NOAA in this major interagency Arctic collaboration.

Full access
S. Sharmila
,
K. J. E. Walsh
,
M. Thatcher
,
S. Wales
, and
S. Utembe

Abstract

Recent global climate models with sufficient resolution and physics offer a promising approach for simulating real-world tropical cyclone (TC) statistics and their changing relationship with climate. In the first part of this study, we examine the performance of a high-resolution (~40-km horizontal grid) global climate model, the atmospheric component of the Australian Community Climate and Earth System Simulator (ACCESS) based on the Met Office Unified Model (UM8.5) Global Atmosphere (GA6.0). The atmospheric model is forced with observed sea surface temperature, and 20 years of integrations (1990–2009) are analyzed for evaluating the simulated TC statistics compared with observations. The model reproduces the observed climatology, geographical distribution, and interhemispheric asymmetry of global TC formation rates reasonably well. The annual cycle of regional TC formation rates over most basins is also well captured. However, there are some regional biases in the geographical distribution of TC formation rates. To identify the sources of these biases, a suite of model-simulated large-scale climate conditions that critically modulate TC formation rates are further evaluated, including the assessment of a multivariate genesis potential index. Results indicate that the model TC genesis biases correspond well to the inherent biases in the simulated large-scale climatic states, although the relative effects on TC genesis of some variables differs between basins. This highlights the model’s mean-state dependency in simulating accurate TC formation rates.

Free access
K. J. E. Walsh
,
S. Sharmila
,
M. Thatcher
,
S. Wales
,
S. Utembe
, and
A. Vaughan

Abstract

This study aims to investigate the response of simulated tropical cyclone formation to specific climate conditions, using an idealized aquaplanet framework of an ~40-km-horizontal-resolution atmospheric general circulation model. Two sets of idealized model experiments have been performed, one with a set of uniformly distributed constant global sea surface temperatures (SSTs) and another in which varying meridional SST gradients are imposed. The results show that the strongest relationship between climate and tropical cyclone formation is with vertical static stability: increased static stability is strongly associated with decreased tropical cyclone formation. Vertical wind shear and midtropospheric vertical velocity also appear to be related to tropical cyclone formation, although below a threshold value of wind shear there appears to be little relationship. The relationship of tropical cyclone formation with maximum potential intensity and mean sea surface temperature is weak and not monotonic. These simulations strongly suggest that vertical static stability should be part of any climate theory of tropical cyclone formation.

Free access