Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Karen H. Rosenlof x
  • Refine by Access: All Content x
Clear All Modify Search
Sean M. Davis and Karen H. Rosenlof

Abstract

Poleward migration of the latitudinal edge of the tropics of 0.25°–3.0° decade−1 has been reported in several recent studies based on satellite and radiosonde data and reanalysis output covering the past ~30 yr. The goal of this paper is to identify the extent to which this large range of trends can be explained by the use of different data sources, time periods, and edge definitions, as well as how the widening varies as a function of hemisphere and season. Toward this end, a suite of tropical edge latitude diagnostics based on tropopause height, winds, precipitation–evaporation, and outgoing longwave radiation (OLR) are analyzed using several reanalyses and satellite datasets. These diagnostics include both previously used definitions and new definitions designed for more robust detection. The wide range of widening trends is shown to be primarily due to the use of different datasets and edge definitions and only secondarily due to varying start–end dates. This study also shows that the large trends (>~1° decade−1) previously reported in tropopause and OLR diagnostics are due to the use of subjective definitions based on absolute thresholds. Statistically significant Hadley cell expansion based on the mean meridional streamfunction of 1.0°–1.5° decade−1 is found in three of four reanalyses that cover the full time period (1979–2009), whereas other diagnostics yield trends of −0.5°–0.8° decade−1 that are mostly insignificant. There are indications of hemispheric and seasonal differences in the trends, but the differences are not statistically significant.

Full access
Karen H. Rosenlof, Duane E. Stevens, John R. Anderson, and Paul E. Ciesielski

Abstract

The term Walker Circulation is used to refer to the zonal overturning across the equatorial Pacific driven by enhanced convection over the Indonesian region. In this work, an attempt is made to simulate the Walker Circulation using a linear model that includes a cumulus friction parameterization. The work of Geisler is extended by including a realistic mean zonal wind field obtained from the FGGE dataset and a prescribed mean Hadley cell that is computed from an analytical streamfunction.

The model is forced by a stationary tropical heat source. The sensitivity of the model circulation to changes in the basic state is examined. Model results show that the inclusion of a nonzero mean zonal wind field tends to enhance the extratropical response in the winter hemisphere. Including a cumulus friction parameterization tends to damp the zonal wind response near the heating center and also lower the level of zero zonal wind in the model Walker Circulation.

Including a mean Hadley cell in the basic state has the greatest effect on the model circulation in the tropics. It acts to raise the level of zero wind which makes the model circulation better resemble the observed Walker Circulation. Advection by the mean vertical velocity field is found to be a major term in the u-momentum equation and is of opposite sign from the largest cumulus friction term. Results indicate that when cumulus friction is included in a linear model calculation, a mean vertical velocity field should also be included.

When the effects of the zonal mean winds and the Hadley Cell/cumulus friction terms are included the model response resembles the observed tropical and subtropical responses to the El Niño ocean temperature anomaly.

Full access
Paul J. Young, Karen H. Rosenlof, Susan Solomon, Steven C. Sherwood, Qiang Fu, and Jean-François Lamarque

Abstract

Seasonally and vertically resolved changes in the strength of the Brewer–Dobson circulation (BDC) were inferred using temperatures measured by the Microwave Sounding Unit (MSU), Stratospheric Sounding Unit (SSU), and radiosondes.

Linear trends in an empirically derived “BDC index” (extratropical minus tropical temperatures), over 1979–2005, were found to be consistent with a significant strengthening of the Northern Hemisphere (NH) branch of the BDC during December throughout the depth of the stratosphere. Trends in the same index suggest a significant strengthening of the Southern Hemisphere branch of the BDC during August through to the midstratosphere, as well as a significant weakening during March in the NH lower stratosphere. Such trends, however, are only significant if it is assumed that interannual variability due to the BDC can be removed by regression of the tropics against the extratropics and vice versa (i.e., exploiting the out-of-phase nature of tropical and extratropical temperatures as demonstrated by previous studies of temperature and the BDC).

The possibility that the apparent lower-stratosphere BDC December strengthening and March weakening could point to a change in the seasonal cycle of the circulation is also explored. The differences between a 1979–91 average and 1995–2005 average tropical temperature seasonal cycle in lower-stratospheric MSU data show an apparent shift in the minimum from February to January, consistent with a change in the timing of the maximum wave driving. Additionally, the importance of decadal variability in shaping the overall trends is highlighted, in particular for the suggested March BDC weakening, which may now be strengthening from a minimum in the 1990s.

Full access
Paul J. Young, David W. J. Thompson, Karen H. Rosenlof, Susan Solomon, and Jean-François Lamarque

Abstract

Previous studies have shown that lower-stratosphere temperatures display a near-perfect cancellation between tropical and extratropical latitudes on both annual and interannual time scales. The out-of-phase relationship between tropical and high-latitude lower-stratospheric temperatures is a consequence of variability in the strength of the Brewer–Dobson circulation (BDC). In this study, the signal of the BDC in stratospheric temperature variability is examined throughout the depth of the stratosphere using data from the Stratospheric Sounding Unit (SSU).

While the BDC has a seemingly modest signal in the annual cycle in zonal-mean temperatures in the mid- and upper stratosphere, it has a pronounced signal in the month-to-month and interannual variability. Tropical and extratropical temperatures are significantly negatively correlated in all SSU channels on interannual time scales, suggesting that variations in wave driving are a major factor controlling global-scale temperature variability not only in the lower stratosphere (as shown in previous studies), but also in the mid- and upper stratosphere. The out-of-phase relationship between tropical and high latitudes peaks at all levels during the cold-season months: December–March in the Northern Hemisphere and July–October in the Southern Hemisphere. In the upper stratosphere, the out-of-phase relationship with high-latitude temperatures extends beyond the tropics and well into the extratropics of the opposite hemisphere.

The seasonal cycle in stratospheric temperatures follows the annual march of insolation at all levels and latitudes except in the mid- to upper tropical stratosphere, where it is dominated by the semiannual oscillation. Mid- to upper-stratospheric temperatures also exhibit a distinct but small semiannual cycle at extratropical latitudes.

Full access
Fred L. Moore, Eric A. Ray, Karen H. Rosenlof, James W. Elkins, Pieter Tans, Anna Karion, and Colm Sweeney

A stratospheric trace gas measurement program using balloon-based sonde and AirCore sampler techniques is proposed as a way to monitor the strength of the stratospheric mean meridional or Brewer–Dobson circulation. Modeling work predicts a strengthening of the Brewer–Dobson circulation in response to increasing greenhouse gas concentrations; such a change will likely impact tropospheric climate. Because the strength of the Brewer–Dobson circulation is an unmeasureable quantity, trace gas measurements are used to infer characteristics of the circulation. At present, stratospheric trace gas measurements are sporadic in time and/or place, primarily associated with localized aircraft or balloon campaigns or relatively short-lived satellite instruments. This program would consist of regular trace gas profile measurements taken at multiple latitudes covering tropical, midlatitude, and polar regimes. The program would make use of the relatively low-cost AirCore and sonde techniques, allowing more frequent measurements given the significantly lower cost than with current techniques. The program will provide a means of monitoring changes in the strength and redistribution of the stratospheric circulation. The goals are to monitor the strength of the Brewer–Dobson circulation and to improve understanding of the reasons for stratospheric circulation changes, ultimately resulting in more realistic model predictions of climate change for the coming decades.

Full access
Kevin M. Grise, Sean M. Davis, Isla R. Simpson, Darryn W. Waugh, Qiang Fu, Robert J. Allen, Karen H. Rosenlof, Caroline C. Ummenhofer, Kristopher B. Karnauskas, Amanda C. Maycock, Xiao-Wei Quan, Thomas Birner, and Paul W. Staten

Abstract

Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability.

Full access
Gabriele G. Pfister, Sebastian D. Eastham, Avelino F. Arellano, Bernard Aumont, Kelley C. Barsanti, Mary C. Barth, Andrew Conley, Nicholas A. Davis, Louisa K. Emmons, Jerome D. Fast, Arlene M. Fiore, Benjamin Gaubert, Steve Goldhaber, Claire Granier, Georg A. Grell, Marc Guevara, Daven K. Henze, Alma Hodzic, Xiaohong Liu, Daniel R. Marsh, John J. Orlando, John M. C. Plane, Lorenzo M. Polvani, Karen H. Rosenlof, Allison L. Steiner, Daniel J. Jacob, and Guy P. Brasseur

ABSTRACT

To explore the various couplings across space and time and between ecosystems in a consistent manner, atmospheric modeling is moving away from the fractured limited-scale modeling strategy of the past toward a unification of the range of scales inherent in the Earth system. This paper describes the forward-looking Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), which is intended to become the next-generation community infrastructure for research involving atmospheric chemistry and aerosols. MUSICA will be developed collaboratively by the National Center for Atmospheric Research (NCAR) and university and government researchers, with the goal of serving the international research and applications communities. The capability of unifying various spatiotemporal scales, coupling to other Earth system components, and process-level modularization will allow advances in both fundamental and applied research in atmospheric composition, air quality, and climate and is also envisioned to become a platform that addresses the needs of policy makers and stakeholders.

Free access
Eric J. Jensen, Leonhard Pfister, David E. Jordan, Thaopaul V. Bui, Rei Ueyama, Hanwant B. Singh, Troy D. Thornberry, Andrew W. Rollins, Ru-Shan Gao, David W. Fahey, Karen H. Rosenlof, James W. Elkins, Glenn S. Diskin, Joshua P. DiGangi, R. Paul Lawson, Sarah Woods, Elliot L. Atlas, Maria A. Navarro Rodriguez, Steven C. Wofsy, Jasna Pittman, Charles G. Bardeen, Owen B. Toon, Bruce C. Kindel, Paul A. Newman, Matthew J. McGill, Dennis L. Hlavka, Leslie R. Lait, Mark R. Schoeberl, John W. Bergman, Henry B. Selkirk, M. Joan Alexander, Ji-Eun Kim, Boon H. Lim, Jochen Stutz, and Klaus Pfeilsticker

Abstract

The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).

Full access
Randall M. Dole, J. Ryan Spackman, Matthew Newman, Gilbert P. Compo, Catherine A. Smith, Leslie M. Hartten, Joseph J. Barsugli, Robert S. Webb, Martin P. Hoerling, Robert Cifelli, Klaus Wolter, Christopher D. Barnet, Maria Gehne, Ronald Gelaro, George N. Kiladis, Scott Abbott, Elena Akish, John Albers, John M. Brown, Christopher J. Cox, Lisa Darby, Gijs de Boer, Barbara DeLuisi, Juliana Dias, Jason Dunion, Jon Eischeid, Christopher Fairall, Antonia Gambacorta, Brian K. Gorton, Andrew Hoell, Janet Intrieri, Darren Jackson, Paul E. Johnston, Richard Lataitis, Kelly M. Mahoney, Katherine McCaffrey, H. Alex McColl, Michael J. Mueller, Donald Murray, Paul J. Neiman, William Otto, Ola Persson, Xiao-Wei Quan, Imtiaz Rangwala, Andrea J. Ray, David Reynolds, Emily Riley Dellaripa, Karen Rosenlof, Naoko Sakaeda, Prashant D. Sardeshmukh, Laura C. Slivinski, Lesley Smith, Amy Solomon, Dustin Swales, Stefan Tulich, Allen White, Gary Wick, Matthew G. Winterkorn, Daniel E. Wolfe, and Robert Zamora

Abstract

Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.

The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.

Open access
Chelsea R. Thompson, Steven C. Wofsy, Michael J. Prather, Paul A. Newman, Thomas F. Hanisco, Thomas B. Ryerson, David W. Fahey, Eric C. Apel, Charles A. Brock, William H. Brune, Karl Froyd, Joseph M. Katich, Julie M. Nicely, Jeff Peischl, Eric Ray, Patrick R. Veres, Siyuan Wang, Hannah M. Allen, Elizabeth Asher, Huisheng Bian, Donald Blake, Ilann Bourgeois, John Budney, T. Paul Bui, Amy Butler, Pedro Campuzano-Jost, Cecilia Chang, Mian Chin, Róisín Commane, Gus Correa, John D. Crounse, Bruce Daube, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, James W. Elkins, Arlene M. Fiore, Clare M. Flynn, Hao Guo, Samuel R. Hall, Reem A. Hannun, Alan Hills, Eric J. Hintsa, Alma Hodzic, Rebecca S. Hornbrook, L. Greg Huey, Jose L. Jimenez, Ralph F. Keeling, Michelle J. Kim, Agnieszka Kupc, Forrest Lacey, Leslie R. Lait, Jean-Francois Lamarque, Junhua Liu, Kathryn McKain, Simone Meinardi, David O. Miller, Stephen A. Montzka, Fred L. Moore, Eric J. Morgan, Daniel M. Murphy, Lee T. Murray, Benjamin A. Nault, J. Andrew Neuman, Louis Nguyen, Yenny Gonzalez, Andrew Rollins, Karen Rosenlof, Maryann Sargent, Gregory Schill, Joshua P. Schwarz, Jason M. St. Clair, Stephen D. Steenrod, Britton B. Stephens, Susan E. Strahan, Sarah A. Strode, Colm Sweeney, Alexander B. Thames, Kirk Ullmann, Nicholas Wagner, Rodney Weber, Bernadett Weinzierl, Paul O. Wennberg, Christina J. Williamson, Glenn M. Wolfe, and Linghan Zeng

Abstract

This article provides an overview of the NASA Atmospheric Tomography (ATom) mission and a summary of selected scientific findings to date. ATom was an airborne measurements and modeling campaign aimed at characterizing the composition and chemistry of the troposphere over the most remote regions of the Pacific, Southern, Atlantic, and Arctic Oceans, and examining the impact of anthropogenic and natural emissions on a global scale. These remote regions dominate global chemical reactivity and are exceptionally important for global air quality and climate. ATom data provide the in situ measurements needed to understand the range of chemical species and their reactions, and to test satellite remote sensing observations and global models over large regions of the remote atmosphere. Lack of data in these regions, particularly over the oceans, has limited our understanding of how atmospheric composition is changing in response to shifting anthropogenic emissions and physical climate change. ATom was designed as a global-scale tomographic sampling mission with extensive geographic and seasonal coverage, tropospheric vertical profiling, and detailed speciation of reactive compounds and pollution tracers. ATom flew the NASA DC-8 research aircraft over four seasons to collect a comprehensive suite of measurements of gases, aerosols, and radical species from the remote troposphere and lower stratosphere on four global circuits from 2016 to 2018. Flights maintained near-continuous vertical profiling of 0.15–13-km altitudes on long meridional transects of the Pacific and Atlantic Ocean basins. Analysis and modeling of ATom data have led to the significant early findings highlighted here.

Full access