Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Karen L. Johnson x
  • Refine by Access: All Content x
Clear All Modify Search
Edward P. Luke, Pavlos Kollias, Karen L. Johnson, and Eugene E. Clothiaux

Abstract

The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program operates 35-GHz millimeter-wavelength cloud radars (MMCRs) in several climatologically distinct regions. The MMCRs, which are centerpiece instruments for the observation of clouds and precipitation, provide continuous, vertically resolved information on all hydrometeors above the ARM Climate Research Facilities (ACRF). However, their ability to observe clouds in the lowest 2–3 km of the atmosphere is often obscured by the presence of strong echoes from insects, especially during the warm months at the continental midlatitude Southern Great Plains (SGP) ACRF. Here, a new automated technique for the detection and elimination of insect-contaminated echoes from the MMCR observations is presented. The technique is based on recorded MMCR Doppler spectra, a feature extractor that conditions insect spectral signatures, and the use of a neural network algorithm for the generation of an insect (clutter) mask. The technique exhibits significant skill in the identification of insect radar returns (more than 92% of insect-induced returns are identified) when the sole input to the classifier is the MMCR Doppler spectrum. The addition of circular polarization observations by the MMCR and ceilometer cloud-base measurements further improve the performance of the technique and form an even more reliable method for the removal of insect radar echoes at the ARM site. Recently, a 94-GHz Doppler polarimetric radar was installed next to the MMCR at the ACRF SGP site. Observations by both radars are used to evaluate the potential of the 94-GHz radar as being insect free and to show that dual wavelength radar reflectivity measurements can be used to identify insect radar returns.

Full access
Pavlos Kollias, Bruce A. Albrecht, Eugene E. Clothiaux, Mark A. Miller, Karen L. Johnson, and Kenneth P. Moran

Abstract

The U.S. Department of Energy (DOE) Atmospheric Radiation Measurements (ARM) program operates millimeter-wavelength cloud radars (MMCRs) in several specific locations within different climatological regimes. These vertically pointing cloud profiling radars supply the three most important Doppler spectrum moment estimates, which are the radar reflectivity (or zero moment), the mean Doppler velocity (or first moment), and the Doppler spectrum width (or second moment), as a function of time and height. The ARM MMCR Doppler moment estimates form the basis of a number of algorithms for retrieving cloud microphysical and radiative properties. The retrieval algorithms are highly sensitive to the quality and accuracy of the MMCR Doppler moment estimates. The significance of these sensitivities should not be underestimated, because the inherent physical variability of clouds, instrument-induced noise, and sampling strategy limitations all potentially introduce errors into the Doppler moment estimates. In this article, the accuracies of the first three Doppler moment estimates from the ARM MMCRs are evaluated for a set of typical cloud conditions from the three DOE ARM program sites. Results of the analysis suggest that significant errors in the Doppler moment estimates are possible in the current configurations of the ARM MMCRs. In particular, weakly reflecting clouds with low signal-to-noise ratios (SNRs), as well as turbulent clouds with nonzero updraft and downdraft velocities that are coupled with high SNR, are shown to produce degraded Doppler moment estimates in the current ARM MMCR operational mode processing strategies. Analysis of the Doppler moment estimates and MMCR receiver noise characteristics suggests that the introduction of a set of quality control criteria is necessary for identifying periods of degraded receiver performance that leads to larger uncertainties in the Doppler moment estimates. Moreover, the temporal sampling of the ARM MMCRs was found to be insufficient for representing the actual dynamical states in many types of clouds, especially boundary layer clouds. New digital signal processors (DSPs) are currently being developed for the ARM MMCRs. The findings presented in this study will be used in the design of a new set of operational strategies for the ARM MMCRs once they have been upgraded with the new DSPs.

Full access
Kyo-Sun Sunny Lim, Laura D. Riihimaki, Yan Shi, Donna Flynn, Jessica M. Kleiss, Larry K. Berg, William I. Gustafson Jr., Yunyan Zhang, and Karen L. Johnson

Abstract

A long-term climatology of classified cloud types has been generated for 13 years (1997–2009) over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site for seven cloud categories: low clouds, congestus, deep convection, altocumulus, altostratus, cirrostratus/anvil, and cirrus. The classification was based on the cloud macrophysical quantities of cloud top, cloud base, and physical thickness of cloud layers, as measured by active sensors such as the millimeter-wavelength cloud radar (MMCR) and micropulse lidar (MPL). Climate variability of cloud characteristics has been examined using the 13-yr cloud-type retrieval. Low clouds and cirrus showed distinct diurnal and seasonal cycles. Total cloud occurrence followed the variation of low clouds, with a diurnal peak in early afternoon and a seasonal maximum in late winter. Additionally, further work has been done to identify fair-weather shallow cumulus (FWSC) events for 9 years (2000–08). Periods containing FWSC, a subcategory of clouds classified as low clouds, were produced using cloud fraction information from a total-sky imager and ceilometer. The identified FWSC periods in our study show good agreement with manually identified FWSC, missing only 6 cases out of 70 possible events during the spring to summer seasons (May–August).

Open access
G. Alexander Sokolowsky, Eugene E. Clothiaux, Cory F. Baggett, Sukyoung Lee, Steven B. Feldstein, Edwin W. Eloranta, Maria P. Cadeddu, Nitin Bharadwaj, and Karen L. Johnson

Abstract

Intrusions of warm, moist air into the Arctic during winter have emerged as important contributors to Arctic surface warming. Previous studies indicate that temperature, moisture, and hydrometeor enhancements during intrusions all make contributions to surface warming via emission of radiation down to the surface. Here, datasets from instrumentation at the Atmospheric Radiation Measurement User Facility in Utqiaġvik (formerly Barrow) for the six months from November through April for the six winter seasons of 2013/14–2018/19 were used to quantify the atmospheric state. These datasets subsequently served as inputs to compute surface downwelling longwave irradiances via radiative transfer computations at 1-min intervals with different combinations of constituents over the six winter seasons. The computed six winter average irradiance with all constituents included was 205.0 W m−2, close to the average measured irradiance of 206.7 W m−2, a difference of −0.8%. During this period, water vapor was the most important contributor to the irradiance. The computed average irradiance with dry gas was 71.9 W m−2. Separately adding water vapor, liquid, or ice to the dry atmosphere led to average increases of 2.4, 1.8, and 1.6 times the dry atmosphere irradiance, respectively. During the analysis period, 15 episodes of warm, moist air intrusions were identified. During the intrusions, individual contributions from elevated temperature, water vapor, liquid water, and ice water were found to be comparable to each other. These findings indicate that all properties of the atmospheric state must be known in order to quantify the radiation coming down to the Arctic surface during winter.

Free access
William I. Gustafson Jr., Andrew M. Vogelmann, Zhijin Li, Xiaoping Cheng, Kyle K. Dumas, Satoshi Endo, Karen L. Johnson, Bhargavi Krishna, Tami Fairless, and Heng Xiao
Full access
Pavlos Kollias, Mark A. Miller, Edward P. Luke, Karen L. Johnson, Eugene E. Clothiaux, Kenneth P. Moran, Kevin B. Widener, and Bruce A. Albrecht

Abstract

The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program operates millimeter-wavelength cloud radars in several climatologically distinct regions. The digital signal processors for these radars were recently upgraded and allow for enhancements in the operational parameters running on them. Recent evaluations of millimeter-wavelength cloud radar signal processing performance relative to the range of cloud dynamical and microphysical conditions encountered at the ARM Program sites have indicated that improvements are necessary, including significant improvement in temporal resolution (i.e., less than 1 s for dwell and 2 s for dwell and processing), wider Nyquist velocities, operational dealiasing of the recorded spectra, removal of pulse compression while sampling the boundary layer, and continuous recording of Doppler spectra. A new set of millimeter-wavelength cloud radar operational modes that incorporate these enhancements is presented. A significant change in radar sampling is the introduction of an uneven mode sequence with 50% of the sampling time dedicated to the lower atmosphere, allowing for detailed characterization of boundary layer clouds. The changes in the operational modes have a substantial impact on the postprocessing algorithms that are used to extract cloud information from the radar data. New methods for postprocessing of recorded Doppler spectra are presented that result in more accurate identification of radar clutter (e.g., insects) and extraction of turbulence and microphysical information. Results of recent studies on the error characteristics of derived Doppler moments are included so that uncertainty estimates are now included with the moments. The microscale data product based on the increased temporal resolution of the millimeter-wavelength cloud radars is described. It contains the number of local maxima in each Doppler spectrum, the Doppler moments of the primary peak, uncertainty estimates for the Doppler moments of the primary peak, Doppler moment shape parameters (e.g., skewness and kurtosis), and clear-air clutter flags.

Full access
William I. Gustafson Jr, Andrew M. Vogelmann, Zhijin Li, Xiaoping Cheng, Kyle K. Dumas, Satoshi Endo, Karen L. Johnson, Bhargavi Krishna, Tami Fairless, and Heng Xiao

Abstract

The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) user facility recently initiated the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) activity focused on shallow convection at ARM’s Southern Great Plains (SGP) atmospheric observatory in Oklahoma. LASSO is designed to overcome an oft-shared difficulty of bridging the gap from point-based measurements to scales relevant for model parameterization development, and it provides an approach to add value to observations through modeling. LASSO is envisioned to be useful to modelers, theoreticians, and observationalists needing information relevant to cloud processes. LASSO does so by combining a suite of observations, LES inputs and outputs, diagnostics, and skill scores into data bundles that are freely available, and by simplifying user access to the data to speed scientific inquiry. The combination of relevant observations with observationally constrained LES output provides detail that gives context to the observations by showing physically consistent connections between processes based on the simulated state. A unique approach for LASSO is the generation of a library of cases for days with shallow convection combined with an ensemble of LES for each case. The library enables researchers to move beyond the single-case-study approach typical of LES research. The ensemble members are produced using a selection of different large-scale forcing sources and spatial scales. Since large-scale forcing is one of the most uncertain aspects of generating the LES, the ensemble informs users about potential uncertainty for each date and increases the probability of having an accurate forcing for each case.

Free access
Pavlos Kollias, Eugene E. Clothiaux, Thomas P. Ackerman, Bruce A. Albrecht, Kevin B. Widener, Ken P. Moran, Edward P. Luke, Karen L. Johnson, Nitin Bharadwaj, James B. Mead, Mark A. Miller, Johannes Verlinde, Roger T. Marchand, and Gerald G. Mace
Full access

CLOUDS AND MORE: ARM Climate Modeling Best Estimate Data

A New Data Product for Climate Studies

Shaocheng Xie, Renata B. McCoy, Stephen A. Klein, Richard T. Cederwall, Warren J. Wiscombe, Michael P. Jensen, Karen L. Johnson, Eugene E. Clothiaux, Krista L. Gaustad, Charles N. Long, James H. Mather, Sally A. McFarlane, Yan Shi, Jean-Christophe Golaz, Yanluan Lin, Stefanie D. Hall, Raymond A. McCord, Giri Palanisamy, and David D. Turner

Abstract

No Abstract available.

Full access
Bart Geerts, Scott E. Giangrande, Greg M. McFarquhar, Lulin Xue, Steven J. Abel, Jennifer M. Comstock, Susanne Crewell, Paul J. DeMott, Kerstin Ebell, Paul Field, Thomas C. J. Hill, Alexis Hunzinger, Michael P. Jensen, Karen L. Johnson, Timothy W. Juliano, Pavlos Kollias, Branko Kosovic, Christian Lackner, Ed Luke, Christof Lüpkes, Alyssa A. Matthews, Roel Neggers, Mikhail Ovchinnikov, Heath Powers, Matthew D. Shupe, Thomas Spengler, Benjamin E. Swanson, Michael Tjernström, Adam K. Theisen, Nathan A. Wales, Yonggang Wang, Manfred Wendisch, and Peng Wu

Abstract

One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.

Full access