Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Karl Muller x
  • All content x
Clear All Modify Search
Paul Konopka, Jens-Uwe Grooß, Karl W. Hoppel, Hildegard-Maria Steinhorst, and Rolf Müller


The 3D version of the Chemical Lagrangian Model of the Stratosphere (CLAMS) is used to study the transport of CH4 and O3 in the Antarctic stratosphere between 1 September and 30 November 2002, that is, over the time period when unprecedented major stratospheric warming in late September split the polar vortex into two parts. The isentropic and cross-isentropic velocities in CLAMS are derived from ECMWF winds and heating/cooling rates calculated with a radiation module. The irreversible part of transport, that is, mixing, is driven by the local horizontal strain and vertical shear rates with mixing parameters deduced from in situ observations.

The CH4 distribution after the vortex split shows a completely different behavior above and below 600 K. Above this potential temperature level, until the beginning of November, a significant part of vortex air is transported into the midlatitudes up to 40°S. The lifetime of the vortex remnants formed after the vortex split decreases with the altitude with values of about 3 and 6 weeks at 900 and 700 K, respectively.

Despite this enormous dynamical disturbance of the vortex, the intact part between 400 and 600 K that “survived” the major warming was strongly isolated from the extravortex air until the end of November. According to CLAMS simulations, the air masses within this part of the vortex did not experience any significant dilution with the midlatitude air.

By transporting ozone in CLAMS as a passive tracer, the chemical ozone loss was estimated from the difference between the observed [Polar Ozone and Aerosol Measurement III (POAM III) and Halogen Occultation Experiment (HALOE)] and simulated ozone profiles. Starting from 1 September, up to 2.0 ppmv O3 around 480 K and about 70 Dobson units between 450 and 550 K were destroyed until the vortex was split. After the major warming, no additional ozone loss can be derived, but in the intact vortex part between 450 and 550 K, the accumulated ozone loss was “frozen in” until the end of November.

Full access
Alberto Troccoli, Karl Muller, Peter Coppin, Robert Davy, Chris Russell, and Annette L. Hirsch


Accurate estimates of long-term linear trends of wind speed provide a useful indicator for circulation changes in the atmosphere and are invaluable for the planning and financing of sectors such as wind energy. Here a large number of wind observations over Australia and reanalysis products are analyzed to compute such trends. After a thorough quality control of the observations, it is found that the wind speed trends for 1975–2006 and 1989–2006 over Australia are sensitive to the height of the station: they are largely negative for the 2-m data but are predominantly positive for the 10-m data. The mean relative trend at 2 m is −0.10 ± 0.03% yr−1 (−0.36 ± 0.04% yr−1) for the 1975–2006 (1989–2006) period, whereas at 10 m it is 0.90 ± 0.03% yr−1 (0.69 ± 0.04% yr−1) for the 1975–2006 (1989–2006) period. Also, at 10 m light winds tend to increase more rapidly than the mean winds, whereas strong winds increase less rapidly than the mean winds; at 2 m the trends in both light and strong winds vary in line with the mean winds. It was found that a qualitative link could be established between the observed features in the linear trends and some atmospheric circulation indicators (mean sea level pressure, wind speed at 850 hPa, and geopotential at 850 hPa), particularly for the 10-m observations. Further, the magnitude of the trend is also sensitive to the period selected, being closer to zero when a very long period, 1948–2006, is considered. As a consequence, changes in the atmospheric circulation on climatic time scales appear unlikely.

Full access
Malte Müller, Mariken Homleid, Karl-Ivar Ivarsson, Morten A. Ø. Køltzow, Magnus Lindskog, Knut Helge Midtbø, Ulf Andrae, Trygve Aspelien, Lars Berggren, Dag Bjørge, Per Dahlgren, Jørn Kristiansen, Roger Randriamampianina, Martin Ridal, and Ole Vignes


Since October 2013 a convective-scale weather prediction model has been used operationally to provide short-term forecasts covering large parts of the Nordic region. The model is now operated by a bilateral cooperative effort [Meteorological Cooperation on Operational Numerical Weather Prediction (MetCoOp)] between the Norwegian Meteorological Institute and the Swedish Meteorological and Hydrological Institute. The core of the model is based on the convection-permitting Applications of Research to Operations at Mesoscale (AROME) model developed by Météo-France. In this paper the specific modifications and updates that have been made to suit advanced high-resolution weather forecasts over the Nordic regions are described. This includes modifications in the surface drag description, microphysics, snow assimilation, as well as an update of the ecosystem and surface parameter description. Novel observation types are introduced in the operational runs, including ground-based Global Navigation Satellite System (GNSS) observations and radar reflectivity data from the Norwegian and Swedish radar networks. After almost two years’ worth of experience with the AROME-MetCoOp model, the model’s sensitivities to the use of specific parameterization settings are characterized and the forecast skills demonstrating the benefit as compared with the global European Centre for Medium-Range Weather Forecasts’ Integrated Forecasting System (ECMWF-IFS) are evaluated. Furthermore, case studies are provided to demonstrate the ability of the model to capture extreme precipitation and wind events.

Full access