Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Katherine McCaffrey x
  • Refine by Access: All Content x
Clear All Modify Search
Katherine McCaffrey
,
Baylor Fox-Kemper
, and
Gael Forget

Abstract

The Argo profiling float network has repeatedly sampled much of the World Ocean. This study uses Argo temperature and salinity data to form the tracer structure function of ocean variability at the macroscale (10–1000 km, mesoscale and above). Here, second-order temperature and salinity structure functions over horizontal separations are calculated along either pressure or potential density surfaces, which allows analysis of both active and passive tracer structure functions. Using Argo data, a map of global variance is created from the climatological average and each datum. When turbulence is homogeneous, the structure function slope from Argo can be related to the wavenumber spectrum slope in ocean temperature or salinity variability. This first application of structure function techniques to Argo data gives physically meaningful results based on bootstrapped confidence intervals, showing geographical dependence of the structure functions with slopes near ⅔ on average, independent of depth.

Full access
Andrey A. Grachev
,
Christopher W. Fairall
,
Byron W. Blomquist
,
Harindra J. S. Fernando
,
Laura S. Leo
,
Sebastián F. Otárola-Bustos
,
James M. Wilczak
, and
Katherine L. McCaffrey

Abstract

Measurements made in the Columbia River basin (Oregon) in an area of irregular terrain during the second Wind Forecast Improvement Project (WFIP2) field campaign are used to develop an optimized hybrid bulk algorithm to predict the surface turbulent fluxes from readily measured or modeled quantities over dry and wet bare or lightly vegetated soil surfaces. The hybrid (synthetic) algorithm combines (i) an aerodynamic method for turbulent flow, which is based on the transfer coefficients (drag coefficient and Stanton number), roughness lengths, and Monin–Obukhov similarity; and (ii) a modified Priestley–Taylor (P-T) algorithm with physically based ecophysiological constraints, which is essentially based on the surface energy budget (SEB) equation. Soil heat flux in the latter case was estimated from measurements of soil temperature and soil moisture. In the framework of the hybrid algorithm, bulk estimates of the momentum flux and the sensible heat flux are derived from a traditional aerodynamic approach, whereas the latent heat flux (or moisture flux) is evaluated from a modified P-T model. Direct measurements of the surface fluxes (turbulent and radiative) and other ancillary atmospheric/soil parameters made during WFIP2 for different soil conditions (dry and wet) are used to optimize and tune the hybrid bulk algorithm. The bulk flux estimates are validated against the measured eddy-covariance fluxes. We also discuss the SEB closure over dry and wet surfaces at various time scales based on the modeled and measured fluxes. Although this bulk flux algorithm is optimized for the data collected during the WFIP2, a hybrid approach can be used for similar flux-tower sites and field campaigns.

Full access
Katherine McCaffrey
,
James M. Wilczak
,
Laura Bianco
,
Eric Grimit
,
Justin Sharp
,
Robert Banta
,
Katja Friedrich
,
H. J. S. Fernando
,
Raghavendra Krishnamurthy
,
Laura S. Leo
, and
Paytsar Muradyan

Abstract

Cold pool events occur when deep layers of stable, cold air remain trapped in a valley or basin for multiple days, without mixing out from daytime heating. With large impacts on air quality, freezing events, and especially on wind energy production, they are often poorly forecast by modern mesoscale numerical weather prediction (NWP) models. Understanding the characteristics of cold pools is, therefore, important to provide more accurate forecasts. This study analyzes cold pool characteristics with data collected during the Second Wind Forecast Improvement Project (WFIP2), which took place in the Columbia River basin and Gorge of Oregon and Washington from fall 2015 until spring 2017. A subset of the instrumentation included three microwave radiometer profilers, six radar wind profilers with radio acoustic sounding systems, and seven sodars, which together provided seven sites with collocated vertical profiles of temperature, humidity, wind speed, and wind direction. Using these collocated observations, we developed a set of criteria to determine if a cold pool was present based on stability, wind speed, direction, and temporal continuity, and then developed an automated algorithm based on these criteria to identify all cold pool events over the 18 months of the field project. Characteristics of these events are described, including statistics of the wind speed distributions and profiles, stability conditions, cold pool depths, and descent rates of the cold pool top. The goal of this study is a better understanding of these characteristics and their processes to ultimately lead to improved physical parameterizations in NWP models, and consequently improve forecasts of cold pool events in the study region as well at other locations that experiences similar events.

Free access
James M. Wilczak
,
Mark Stoelinga
,
Larry K. Berg
,
Justin Sharp
,
Caroline Draxl
,
Katherine McCaffrey
,
Robert M. Banta
,
Laura Bianco
,
Irina Djalalova
,
Julie K. Lundquist
,
Paytsar Muradyan
,
Aditya Choukulkar
,
Laura Leo
,
Timothy Bonin
,
Yelena Pichugina
,
Richard Eckman
,
Charles N. Long
,
Kathleen Lantz
,
Rochelle P. Worsnop
,
Jim Bickford
,
Nicola Bodini
,
Duli Chand
,
Andrew Clifton
,
Joel Cline
,
David R. Cook
,
Harindra J. S. Fernando
,
Katja Friedrich
,
Raghavendra Krishnamurthy
,
Melinda Marquis
,
Jim McCaa
,
Joseph B. Olson
,
Sebastian Otarola-Bustos
,
George Scott
,
William J. Shaw
,
Sonia Wharton
, and
Allen B. White

Abstract

The Second Wind Forecast Improvement Project (WFIP2) is a U.S. Department of Energy (DOE)- and National Oceanic and Atmospheric Administration (NOAA)-funded program, with private-sector and university partners, which aims to improve the accuracy of numerical weather prediction (NWP) model forecasts of wind speed in complex terrain for wind energy applications. A core component of WFIP2 was an 18-month field campaign that took place in the U.S. Pacific Northwest between October 2015 and March 2017. A large suite of instrumentation was deployed in a series of telescoping arrays, ranging from 500 km across to a densely instrumented 2 km × 2 km area similar in size to a high-resolution NWP model grid cell. Observations from these instruments are being used to improve our understanding of the meteorological phenomena that affect wind energy production in complex terrain and to evaluate and improve model physical parameterization schemes. We present several brief case studies using these observations to describe phenomena that are routinely difficult to forecast, including wintertime cold pools, diurnally driven gap flows, and mountain waves/wakes. Observing system and data product improvements developed during WFIP2 are also described.

Full access