Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Kathryn R. Fossell x
  • Refine by Access: All Content x
Clear All Modify Search
Kathryn R. Fossell
,
David Ahijevych
,
Rebecca E. Morss
,
Chris Snyder
, and
Chris Davis

Abstract

The potential for storm surge to cause extensive property damage and loss of life has increased urgency to more accurately predict coastal flooding associated with landfalling tropical cyclones. This work investigates the sensitivity of coastal inundation from storm tide (surge + tide) to four hurricane parameters—track, intensity, size, and translation speed—and the sensitivity of inundation forecasts to errors in forecasts of those parameters. An ensemble of storm tide simulations is generated for three storms in the Gulf of Mexico, by driving a storm surge model with best track data and systematically generated perturbations of storm parameters from the best track. The spread of the storm perturbations is compared to average errors in recent operational hurricane forecasts, allowing sensitivity results to be interpreted in terms of practical predictability of coastal inundation at different lead times. Two types of inundation metrics are evaluated: point-based statistics and spatially integrated volumes. The practical predictability of surge inundation is found to be limited foremost by current errors in hurricane track forecasts, followed by intensity errors, then speed errors. Errors in storm size can also play an important role in limiting surge predictability at short lead times, due to observational uncertainty. Results show that given current mean errors in hurricane forecasts, location-specific surge inundation is predictable for as little as 12–24 h prior to landfall, less for small-sized storms. The results also indicate potential for increased surge predictability beyond 24 h for large storms by considering a storm-following, volume-integrated metric of inundation.

Full access
Craig S. Schwartz
,
Glen S. Romine
,
Kathryn R. Fossell
,
Ryan A. Sobash
, and
Morris L. Weisman

Abstract

Precipitation forecasts from convection-allowing ensembles with 3- and 1-km horizontal grid spacing were evaluated between 15 May and 15 June 2013 over central and eastern portions of the United States. Probabilistic forecasts produced from 10- and 30-member, 3-km ensembles were consistently better than forecasts from individual 1-km ensemble members. However, 10-member, 1-km probabilistic forecasts usually were best, especially over the first 12 h and at rainfall rates ≥ 5.0 mm h−1 at later times. Further object-based investigation revealed that better 1-km forecasts at heavier rainfall rates were associated with more accurate placement of mesoscale convective systems compared to 3-km forecasts. The collective results indicate promise for 1-km ensembles once computational resources can support their operational implementation.

Full access
Ryan A. Sobash
,
Craig S. Schwartz
,
Glen S. Romine
,
Kathryn R. Fossell
, and
Morris L. Weisman

Abstract

Probabilistic severe weather forecasts for days 1 and 2 were produced using 30-member convection-allowing ensemble forecasts initialized by an ensemble Kalman filter data assimilation system during a 32-day period coinciding with the Mesoscale Predictability Experiment. The forecasts were generated by smoothing the locations where model output indicated extreme values of updraft helicity, a surrogate for rotating thunderstorms in model output. The day 1 surrogate severe probability forecasts (SSPFs) produced skillful and reliable predictions of severe weather during this period, after an appropriate calibration of the smoothing kernel. The ensemble SSPFs exceeded the skill of SSPFs derived from two benchmark deterministic forecasts, with the largest differences occurring on the mesoscale, while all SSPFs produced similar forecasts on synoptic scales. While the deterministic SSPFs often overforecasted high probabilities, the ensemble improved the reliability of these probabilities, at the expense of producing fewer high-probability values. For the day 2 period, the SSPFs provided competitive guidance compared to the day 1 forecasts, although additional smoothing was needed to produce the same level of skill, reducing the forecast sharpness. Results were similar using 10 ensemble members, suggesting value exists when running a smaller ensemble if computational resources are limited. Finally, the SSPFs were compared to severe weather risk areas identified in Storm Prediction Center (SPC) convective outlooks. The SSPF skill was comparable to the SPC outlook skill in identifying regions where severe weather would occur, although performance varied on a day-to-day basis.

Full access
Craig S. Schwartz
,
Glen S. Romine
,
Ryan A. Sobash
,
Kathryn R. Fossell
, and
Morris L. Weisman

Abstract

This expository paper documents an experimental, real-time, 10-member, 3-km, convection-allowing ensemble prediction system (EPS) developed at the National Center for Atmospheric Research (NCAR) in spring 2015. The EPS is particularly unique in that continuously cycling, limited-area, mesoscale ensemble Kalman filter analyses provide diverse initial conditions. In addition to describing the EPS configurations, initial forecast assessments are presented that suggest the EPS can provide valuable severe weather guidance and skillful predictions of precipitation. The EPS output is available to operational forecasters, many of whom have incorporated the products into their toolboxes. Given such rapid embrace of an experimental system by the operational community, acceleration of convection-allowing EPS development is encouraged.

Full access
Craig S. Schwartz
,
Glen S. Romine
,
Ryan A. Sobash
,
Kathryn R. Fossell
, and
Morris L. Weisman

Abstract

Beginning 7 April 2015, scientists at the U.S. National Center for Atmospheric Research (NCAR) began producing daily, real-time, experimental, 10-member ensemble forecasts with 3-km horizontal grid spacing across the entire conterminous United States. Graphical forecast products were posted in real time to the Internet, where they attracted a large following from both forecasters and researchers across government, academia, and the private sector. Although these forecasts were initially planned to terminate after one year, the project was extended through 30 December 2017 because of the enthusiastic community response. This article details the motivation for the NCAR ensemble project and describes the project’s impacts throughout the meteorological community. Classroom and operational use of the NCAR ensemble are discussed in addition to the diverse application of NCAR ensemble output for research purposes. Furthermore, some performance statistics are provided, and the NCAR ensemble website and data visualization approach are described. We hope the NCAR ensemble’s success will motivate additional experimental forecast demonstrations that transcend current operational capabilities, as forward-looking forecast systems are needed to accelerate operational development and provide students, young scientists, and forecasters with glimpses of what future modeling systems may look like. Additionally, the NCAR ensemble dataset is publicly available and can be used for meaningful research endeavors concerning many meteorological topics.

Full access
Jamie K. Wolff
,
Kathryn R. Fossell
,
Michelle Harrold
,
Michael Kavulich Jr.
, and
John Halley Gotway
Full access
Craig S. Schwartz
,
May Wong
,
Glen S. Romine
,
Ryan A. Sobash
, and
Kathryn R. Fossell

Abstract

Five sets of 48-h, 10-member, convection-allowing ensemble (CAE) forecasts with 3-km horizontal grid spacing were systematically evaluated over the conterminous United States with a focus on precipitation across 31 cases. The various CAEs solely differed by their initial condition perturbations (ICPs) and central initial states. CAEs initially centered about deterministic Global Forecast System (GFS) analyses were unequivocally better than those initially centered about ensemble mean analyses produced by a limited-area single-physics, single-dynamics 15-km continuously cycling ensemble Kalman filter (EnKF), strongly suggesting relative superiority of the GFS analyses. Additionally, CAEs with flow-dependent ICPs derived from either the EnKF or multimodel 3-h forecasts from the Short-Range Ensemble Forecast (SREF) system had higher fractions skill scores than CAEs with randomly generated mesoscale ICPs. Conversely, due to insufficient spread, CAEs with EnKF ICPs had worse reliability, discrimination, and dispersion than those with random and SREF ICPs. However, members in the CAE with SREF ICPs undesirably clustered by dynamic core represented in the ICPs, and CAEs with random ICPs had poor spinup characteristics. Collectively, these results indicate that continuously cycled EnKF mean analyses were suboptimal for CAE initialization purposes and suggest that further work to improve limited-area continuously cycling EnKFs over large regional domains is warranted. Additionally, the deleterious aspects of using both multimodel and random ICPs suggest efforts toward improving spread in CAEs with single-physics, single-dynamics, flow-dependent ICPs should continue.

Free access
Alex M. Kowaleski
,
Rebecca E. Morss
,
David Ahijevych
, and
Kathryn R. Fossell

Abstract

This article investigates combining a WRF-ADCIRC ensemble with track clustering to evaluate how uncertainties in tropical cyclone–induced storm tide (surge + tide) predictions vary in space and time and to explore whether this method can help elucidate inundation hazard scenarios. The method is demonstrated for simulations of Hurricane Irma (2017) initialized at 1200 UTC 5 September, approximately 5 days before Irma’s Florida landfalls, and 1200 UTC 8 September. Mixture models are used to partition the WRF ensemble tracks from 5 and 8 September into six and five clusters, respectively. Inundation is evaluated in two affected regions: southwest (south and west Florida) and northeast (northeast Florida through South Carolina). For the 5 September simulations, inundation in the southwest region varies significantly across the ensemble, indicating low forecast confidence. However, clustering highlights the areas of inundation risk in south and west Florida associated with different storm tracks. In the northeast region, every cluster has high inundation probabilities along a similar coastal stretch, indicating high confidence at a ~5-day lead time that this area will experience inundation. For the 8 September simulations, track and inundation in both regions vary less across the ensemble, but clustering remains useful for distinguishing among flooding scenarios. These results demonstrate the potential of dynamical TC–surge ensembles to illuminate important aspects of storm surge risk, including highlighting regions of high forecast confidence where preparations can reliably be initiated early. The analysis also shows how clustering can augment probabilistic hazard forecasts by elucidating inundation scenarios and variability across a surge ensemble.

Free access
Glen S. Romine
,
Craig S. Schwartz
,
Judith Berner
,
Kathryn R. Fossell
,
Chris Snyder
,
Jeff L. Anderson
, and
Morris L. Weisman

Abstract

Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have persistent problems with underdispersion. Representing initial and or lateral boundary condition uncertainty along with forecast model error provides a foundation for building a more dependable CPEFS, but the best practice for ensemble system design is not well established.

Several configurations of CPEFSs are examined where ensemble forecasts are nested within a larger domain, drawing initial conditions from a downscaled, continuously cycled, ensemble data assimilation system that provides state-dependent initial condition uncertainty. The control ensemble forecast, with initial condition uncertainty only, is skillful but underdispersive. To improve the reliability of the ensemble forecasts, the control ensemble is supplemented with 1) perturbed lateral boundary conditions; or, model error representation using either 2) stochastic kinetic energy backscatter or 3) stochastically perturbed parameterization tendencies. Forecasts are evaluated against stage IV accumulated precipitation analyses and radiosonde observations. Perturbed ensemble forecasts are also compared to the control forecast to assess the relative impact from adding forecast perturbations. For precipitation forecasts, all perturbation approaches improve ensemble reliability relative to the control CPEFS. Deterministic ensemble member forecast skill, verified against radiosonde observations, decreases when forecast perturbations are added, while ensemble mean forecasts remain similarly skillful to the control.

Full access
Craig S. Schwartz
,
Glen S. Romine
,
Morris L. Weisman
,
Ryan A. Sobash
,
Kathryn R. Fossell
,
Kevin W. Manning
, and
Stanley B. Trier

Abstract

In May and June 2013, the National Center for Atmospheric Research produced real-time 48-h convection-allowing ensemble forecasts at 3-km horizontal grid spacing using the Weather Research and Forecasting (WRF) Model in support of the Mesoscale Predictability Experiment field program. The ensemble forecasts were initialized twice daily at 0000 and 1200 UTC from analysis members of a continuously cycling, limited-area, mesoscale (15 km) ensemble Kalman filter (EnKF) data assimilation system and evaluated with a focus on precipitation and severe weather guidance. Deterministic WRF Model forecasts initialized from GFS analyses were also examined. Subjectively, the ensemble forecasts often produced areas of intense convection over regions where severe weather was observed. Objective statistics confirmed these subjective impressions and indicated that the ensemble was skillful at predicting precipitation and severe weather events. Forecasts initialized at 1200 UTC were more skillful regarding precipitation and severe weather placement than forecasts initialized 12 h earlier at 0000 UTC, and the ensemble forecasts were typically more skillful than GFS-initialized forecasts. At times, 0000 UTC GFS-initialized forecasts had temporal distributions of domain-average rainfall closer to observations than EnKF-initialized forecasts. However, particularly when GFS analyses initialized WRF Model forecasts, 1200 UTC forecasts produced more rainfall during the first diurnal maximum than 0000 UTC forecasts. This behavior was mostly attributed to WRF Model initialization of clouds and moist physical processes. The success of these real-time ensemble forecasts demonstrates the feasibility of using limited-area continuously cycling EnKFs as a method to initialize convection-allowing ensemble forecasts, and future real-time high-resolution ensemble development leveraging EnKFs seems justified.

Full access