Search Results

You are looking at 1 - 10 of 28 items for

  • Author or Editor: Kelly Lombardo x
  • Refine by Access: All Content x
Clear All Modify Search
Kelly Lombardo

Abstract

Idealized 3D numerical simulations are used to quantify the impact of moving marine atmospheric boundary layers (MABLs) on squall lines in an environment representative of the U.S. mid-Atlantic coastal plain. Characteristics of the MABL, including depth and potential temperature, are varied. Squall lines are most intense while moving over the deepest MABLs, while the storm encountering no MABL is the weakest. Storm intensity is only sensitive to MABL temperature when the MABL is sufficiently deep. Collisions between the storm cold pools and MABLs transition storm lift from surface-based cold pools to wavelike features, with the resulting ascent mechanism dependent on MABL density, not depth. Bores form when the MABL is denser than the cold pool and hybrid cold pool–bores form when the densities are similar. While these features support storms over the MABL, the type of lifting mechanism does not control storm intensity alone. Storm intensity depends on the amplification and maintenance of these features, which is determined by the ambient conditions. Isolated convective cells form ahead of squall lines prior to the cold pool–MABL collision, resulting in a rain peak and the eventual discrete propagation of the storms. Cells form as storm-generated high-frequency gravity waves interact with gravity waves generated by the moving marine layers, in the presence of reduced stability by the squall line itself. No cells form in the presence of the storm or the MABL alone.

Free access
Fan Wu
and
Kelly Lombardo

Abstract

A mechanism for precipitation enhancement in squall lines moving over mountainous coastal regions is quantified through idealized numerical simulations. Storm intensity and precipitation peak over the sloping terrain as storms descend from an elevated plateau toward the coastline and encounter the marine atmospheric boundary layer (MABL). Storms are most intense as they encounter the deepest MABLs. As the descending storm outflow collides with a moving MABL (sea breeze), surface and low-level air parcels initially accelerate upward, though their ultimate trajectory is governed by the magnitude of the negative nonhydrostatic inertial pressure perturbation behind the cold pool leading edge. For shallow MABLs, the baroclinic gradient across the gust front generates large horizontal vorticity, a low-level negative pressure perturbation, and thus a downward acceleration of air parcels following their initial ascent. A deep MABL reduces the baroclinically generated vorticity, leading to a weaker pressure perturbation and minimal downward acceleration, allowing air to accelerate into a storm’s updraft. Once storms move away from the terrain base and over the full depth of the MABLs, storms over the deepest MABLs decay most rapidly, while those over the shallowest MABLs initially intensify. Though elevated ascent exists above all MABLs, the deepest MABLs substantially reduce the depth of the high-θ e layer above the MABLs and limit instability. This relationship is insensitive to MABL temperature, even though surface-based ascent is present for the less cold MABLs, the MABL thermal deficit is smaller, and convective available potential energy (CAPE) is higher.

Full access
Kelly Lombardo
and
Tristan Kading

Abstract

Inland squall lines respond to the stable marine atmospheric boundary layer (MABL) as they move toward a coastline and offshore. As a storm’s cold pool collides with the marine layer, characteristics of both determine the resulting convective forcing mechanism over the stable layer and storm characteristics. Idealized numerical experiments exploring a parameter space of MABL characteristics show that the postcollision forcing mechanism is determined by the buoyancy of the cold pool relative to the MABL. When the outflow is less buoyant, storms are forced by a cold pool within the marine environment. When the buoyancies are equivalent, a hybrid cold pool–internal gravity wave develops after the collision. The collision between a cold pool and less buoyant MABL initiates internal waves along the stable layer, regardless of MABL depth. These waves are inefficient at lifting air into the storm, and ascent from the trailing cold pool is needed to support deep convection. Storm intensity decreases with deeper and less buoyant MABLs, in part due to the reduction in elevated instability. Precipitation is enhanced just prior to the collision between a storm and the deepest marine layers. Storms modify their environment downstream, leading to the development of a moist adiabatic unstable layer and a lowering of the level of free convection (LFC) to below the top of the deepest marine layer. An MABL moving as a sea breeze into the storm-modified air successfully lifts parcels to the new LFC, generating convective towers ahead of the squall line. This mechanism may contribute to increased coastal flash flooding risks during observed events.

Full access
Kelly Lombardo
and
Miranda Bitting

Abstract

The annual, seasonal, and diurnal spatiotemporal heavy convective precipitation patterns over a pan-European domain are analyzed in this study using a combination of datasets, including the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG) precipitation rate product, E-OBS ground-based precipitation gauge data, European climatological gauge-adjusted radar precipitation dataset (EURADCLIM), Operational Programme for the Exchange of Weather Radar Information (OPERA) ground-based radar-derived precipitation rates, and fifth major global reanalysis produced by ECMWF (ERA5) total and convective precipitation products. Arrival Time Difference Network (ATDnet) lightning data are used in conjunction with IMERG and EURADCLIM precipitation rates, with an imposed threshold of 10 mm h−1 to classify precipitation as convective. Annually, the largest convective precipitation accumulations are over the European seas and coastlines. In summer, convective precipitation is more common over the European continent, though relatively large accumulations exist over the northern coastal waters and the southern seas, with a seasonal localized maximum over the northern Adriatic Sea. Activity shifts southward to the Mediterranean and its coastlines in autumn and winter, with maxima over the Ionian Sea, the eastern Adriatic Sea, and the adjacent coastline. Over the continent, 1%–10% of the total precipitation accumulated is classified as convective, increasing to 10%–40% over the surrounding seas. In contrast, 30%–50% of ERA5 precipitation accumulations over land is produced by the convective parameterization scheme and 40%–60% over the seas; however, only 1% of ERA5 convective precipitation accumulations are from rain rates exceeding 10 mm h−1. Regional analyses indicate that convective precipitation rates over the inland mountains follow diurnal heating, though little to no diurnal pattern exists in convective precipitation rates over the seas and coastal mountains.

Restricted access
Fan Wu
and
Kelly Lombardo

Abstract

This study employs 3D idealized numerical experiments to investigate the physical processes associated with coastal convection initiation (CI) as an offshore-moving squall line traverses a mountainous coastal region. A squall line can propagate discretely as convection initiates over the lee slope downstream of the primary storm as the cold pool collides with a sea breeze. Intensity of the initiating convection, thus the downstream squall line, is sensitive to the sea-breeze numerical initialization method, since it influences sea-breeze and cold pool characteristics, instability and vertical wind shear in the sea-breeze environment, and ultimately the vertical acceleration of air parcels during CI. Here, sea breezes are generated through four commonly used numerical methods: a cold-block marine atmospheric boundary layer (MABL), a prescribed surface sensible heat flux function, a prescribed surface sensible plus latent heat flux functions, and radiation plus surface-layer parameterization schemes. For MABL-initialized sea breezes, shallow weak sea-breeze flow in a relatively low instability environment results in weak CI. For the remainder, deeper stronger sea-breeze flow in an environment of enhanced instability supports more robust CI. In a subset of experiments, however, the vertical trajectory of air parcels is suppressed leading to weaker convection. Downward acceleration forms due to the horizontal rotation of the sea-breeze flow. Accurate simulations of coastal convective storms rely on an accurate representation of sea breezes. For idealized experiments such as the present simulations, a combination of initialization methods likely produces a more realistic representation of sea breeze and the associated physical processes.

Restricted access
Kelly A. Lombardo
and
Brian A. Colle

Abstract

Organized convective structures over the northeastern United States were classified for two warm seasons (May–August) using 2-km composite radar [i.e., the National Operational Weather Radar (NOWrad)] data. Nine structures were identified: three types of cellular convection (clusters of cells, isolated cells, and broken lines), five types of linear convection (lines with no stratiform precipitation, lines with trailing stratiform precipitation, lines with parallel stratiform precipitation, lines with leading stratiform precipitation, and bow echoes), and one nonlinear system. The occurrence of all structures decreases from the western Appalachian slopes eastward to the Atlantic coast. Isolated cellular convection forms primarily during the morning to late afternoon (1200–2100 UTC) mainly over the high terrain. Clusters of cells form primarily over the Appalachians and the Atlantic coastal plain during the daytime (1200–0000 UTC). Linear convection is favored from midafternoon to early evening (1800–0000 UTC) over land areas. Nonlinear systems develop mainly from midafternoon to late evening (1800–0600 UTC) over the inland areas and over the coastal zone during the early morning (∼1200 UTC).

Composites using the North American Regional Reanalysis (NARR) highlight the ambient conditions for three main convective structures: cellular, linear, and nonlinear. Cellular convection initiates with limited quasigeostrophic forcing and moderate instability [i.e., average most unstable CAPE (MUCAPE) ∼973 J kg−1]. A majority of cells develop in orographically favored upslope areas. Linear convection organizes along surface troughs, supported by 900-hPa frontogenesis and an average ambient MUCAPE of ∼1011 J kg−1. Nonlinear convection organizes along warm fronts associated with larger-scale baroclinic systems, and the MUCAPE is relatively small (∼207 J kg−1).

Full access
John Molinari
,
Kelly Lombardo
, and
David Vollaro

Abstract

A packet of equatorial Rossby (ER) waves that lasted 2.5 months is identified in the lower troposphere of the northwest Pacific. Waves within the packet had a period of 22 days, a wavelength of 3600 km, a westward phase speed of 1.9 m s−1, and a near-zero group speed. The wave properties followed the ER wave dispersion relation with an equivalent depth near 25 m. The packet was associated with the development of at least 8 of the 13 tropical cyclones that formed during the period. A composite was constructed around the genesis locations. Tropical cyclones formed east of the center of the composite ER wave low in a region of strong convection and a separate 850-hPa vorticity maximum.

The background flow during the life of the packet was characterized by 850-hPa zonal wind convergence and easterly vertical wind shear. Wave amplitude peaked at the west end of the convergent region, suggesting that wave accumulation played a significant role in the growth of the packet. The presence of easterly vertical wind shear provided an environment that trapped energy in the lower troposphere. Each of these processes increases wave amplitude and thus the likelihood of tropical cyclone formation within the waves.

The initial low pressure region within the wave packet met Lander’s definition of a monsoon gyre. It developed to the west of persistent localized convection that followed the penetration of an upper-tropospheric trough into the subtropics. It is argued that the monsoon gyre represented the initial ER wave low within the packet.

Full access
Matthew R. Kumjian
and
Kelly Lombardo

Abstract

A detailed microphysical model of hail growth is developed and applied to idealized numerical simulations of deep convective storms. Hailstone embryos of various sizes and densities may be initialized in and around the simulated convective storm updraft, and then are tracked as they are advected and grow through various microphysical processes. Application to an idealized squall line and supercell storm results in a plausibly realistic distribution of maximum hailstone sizes for each. Simulated hail growth trajectories through idealized supercell storms exhibit many consistencies with previous hail trajectory work that used observed storms. Systematic tests of uncertain model parameters and parameterizations are performed, with results highlighting the sensitivity of hail size distributions to these changes. A set of idealized simulations is performed for supercells in environments with varying vertical wind shear to extend and clarify our prior work. The trajectory calculations reveal that, with increased zonal deep-layer shear, broader updrafts lead to increased residence time and thus larger maximum hail sizes. For cases with increased meridional low-level shear, updraft width is also increased, but hailstone sizes are smaller. This is a result of decreased residence time in the updraft, owing to faster northward flow within the updraft that advects hailstones through the growth region more rapidly. The results suggest that environments leading to weakened horizontal flow within supercell updrafts may lead to larger maximum hailstone sizes.

Free access
Kelly A. Lombardo
and
Brian A. Colle

Abstract

Quasi-linear convective systems (QLCSs) crossing the Atlantic coastline over the northeastern United States were classified into three categories based on their evolution upon encountering the coast. Composite analyses show that convective lines that decay near the Atlantic coast or slowly decay over the coastal waters are associated with 900–800-hPa frontogenesis, with greater ambient 0–3-km vertical wind shear for the slowly decaying lines. Systems that maintain their intensity over the coastal ocean are associated with 900-hPa warm air advection, but with little low-level frontogenetical forcing. Neither sea surface temperature nor ambient instability was a clear delimiter between the three evolutions. Sustaining convective lines have the strongest environmental 0–3-km shear of the three types, and this shear increases as these systems approach the coast. In contrast, the low-level shear decreases as decaying and slowly decaying convective lines move toward the Atlantic coastline. There was also a weaker mean surface cold pool for the sustaining systems than the two types of decaying QLCSs, which may favor a more long-lived system if the horizontal vorticity from this cold pool is more balanced by low-level vertical shear.

Full access
Kelly Lombardo
and
Matthew R. Kumjian

Abstract

During the early morning hours of 5 November 2018, a mature mesoscale convective system (MCS) propagated discretely over the second-most populous province of Argentina, Córdoba Province, during the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations–Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO–CACTI) joint field campaigns. Storm behavior was modified by the Sierras de Córdoba, a north–south-oriented regional mountain chain located in the western side of the province. Here, we present observational evidence of the discrete propagation event and the impact of the mountains on the associated physical processes. As the mature MCS moved northeastward and approached the windward side of the mountains, isolated convective cells developed downstream in the mountain lee, 20–50 km ahead of the main convective line. Cells were initiated by an undular bore, which formed as the MCS cold pool moved over the mountain ridge and perturbed the leeside nocturnal, low-level stable layer. The field of isolated cells organized into a new MCS, which continued to move northeastward, while the parent storm decayed as it traversed the mountains. Only the southern portion of the storm propagated discretely, due to variability in mountain height along the chain. In the north, taller mountain peaks prevented the MCS cold pool from moving over the terrain and perturbing the stable layer. Consequently, no bore was generated, and no discrete propagation occurred in this region. To the south, the MCS cold pool was able to traverse the lower-relief mountains, and the discrete propagation was successful.

Full access