Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Kenneth K-W. Lo x
  • Refine by Access: All Content x
Clear All Modify Search
Bing Ye
,
Anthony D. Del Genio
, and
Kenneth K-W. Lo

Abstract

Observed variations of convective available potential energy (CAPE) in the current climate provide one useful test of the performance of cumulus parameterizations used in general circulation models (GCMs). It is found that frequency distributions of tropical Pacific CAPE, as well as the dependence of CAPE on surface wet-bulb potential temperature (Θw) simulated by the Goddard Institute for Space Studies’s GCM, agree well with that observed during the Australian Monsoon Experiment period. CAPE variability in the current climate greatly overestimates climatic changes in basinwide CAPE in the tropical Pacific in response to a 2°C increase in sea surface temperature (SST) in the GCM because of the different physics involved. In the current climate, CAPE variations in space and time are dominated by regional changes in boundary layer temperature and moisture, which in turn are controlled by SST patterns and large-scale motions. Geographical thermodynamic structure variations in the middle and upper troposphere are smaller because of the canceling effects of adiabatic cooling and subsidence warming in the rising and sinking branches of the Walker and Hadley circulations. In a forced equilibrium global climate change, temperature change is fairly well constrained by the change in the moist adiabatic lapse rate and thus the upper troposphere warms to a greater extent than the surface. For this reason, climate change in CAPE is better predicted by assuming that relative humidity remains constant and that the temperature changes according to the moist adiabatic lapse rate change of a parcel with 80% relative humidity lifted from the surface. The moist adiabatic assumption is not symmetrically applicable to a warmer and colder climate: In a warmer regime moist convection determines the tropical temperature structure, but when the climate becomes colder the effect of moist convection diminishes and the large-scale dynamics and radiative processes become relatively important. Although a prediction based on the change in moist adiabat matches the GCM simulation of climate change averaged over the tropical Pacific basin, it does not match the simulation regionally because small changes in the general circulation change the local boundary layer relative humidity by 1%–2%. Thus, the prediction of regional climate change in CAPE is also dependent on subtle changes in the dynamics.

Full access
Anthony D. Del Genio
,
Mao-Sung Yao
,
William Kovari
, and
Kenneth K-W. Lo

Abstract

An efficient new prognostic cloud water parameterization designed for use in global climate models is described. The scheme allows for life cycle effects in stratiform clouds and permits cloud optical properties to be determined interactively. The parameterization contains representations of all important microphysical processes, including autoconversion, accretion, Bergeron–Findeisen diffusional growth, and cloud/rain water evaporation. Small-scale dynamical processes, including detrainment of convective condensate, cloud-top entrainment instability, and stability-dependent cloud physical thickness variations, are also taken into account. Cloud optical thickness is calculated from the predicted liquid/ice water path and a variable droplet effective radius estimated by assuming constant droplet number concentration. Microphysical and radiative properties are assumed to be different for liquid and ice clouds, and for liquid clouds over land and ocean.

The parameterization is validated in several simulations using the Goddard Institute for Space Studies (GISS) general circulation model (GCM). Comparisons are made with a variety of datasets, including ERBE radiative fluxes and cloud forcing, ISCCP and surface-observed cloud properties, SSM/I liquid water path, and SAGE II thin cirrus cover. Validation is judged on the basis of the model's depiction of both the mean state; diurnal, seasonal, and interannual variability; and the temperature dependence of cloud properties. Relative to the diagnostic cloud scheme used in the previous GISS GCM, the prognostic parameterization strengthens the model's hydrologic cycle and general circulation, both directly and indirectly (via increased cumulus heating). Sea surface temperature (SST) perturbation experiments produce low climate sensitivity and slightly negative cloud feedback for globally uniform SST changes, but high sensitivity and positive cloud feedback when tropical Pacific SST gradients weaken with warming. Changes in the extent and optical thickness of tropical cumulus anvils appear to be the primary factor determining the sensitivity. This suggests that correct simulations of upward transport of convective condensate and of Walker circulation changes are of the highest priority for a realistic estimate of cloud feedback in actual greenhouse gas increase scenarios.

Full access