Search Results

You are looking at 1 - 10 of 30 items for

  • Author or Editor: Kenneth W. Howard x
  • Refine by Access: All Content x
Clear All Modify Search
David O. Blanchard
and
Kenneth W. Howard

A brief overview of the 13 June 1984 Denver hailstorm is presented. This storm produced very large hail in a few locations and copious amounts of small hail over a large area. Documentation of the storm includes data from a surface mesonetwork, cooperative observers and storm spotters, dual Doppler radar, profiler winds, radiosonde, lightning detectors, and photographs of smoke tracers. Integration of these data sets provides an interesting and informative look at this destructive storm.

Full access
John A. Augustine
and
Kenneth W. Howard

Abstract

Digital GOES infrared imagery is used to document mesoscale convective complexes (MCCs) over the United States during 1985. The introduction of digital imagery to this process, which has been carried out since 1978, has made possible a partial automation of the MCC documentation procedure and subsequently expanded opportunities for research. In conjunction with these improvements, the definition of an MCC has been slightly modified from that proposed by Maddox in 1980. The warmer threshold area measurement (⩽−32°C) of Maddox's original criteria has been dropped from consideration because its measurement was too subjective, and also was determined to be unnecessary. In 1985, 59 MCCs were identified; this total is approximately 20 to 40 more than in any year since 1978, when these annual summaries began. The monthly distribution and seasonal progression of MCCs in 1985 are similar to those of prior years. The enhanced MCC activity in June 1985 is associated with a persistent favorable quasi-geostrophic forcing during that period. Significant MCC research conducted in 1985 included a prototype large-scale field program (0.-K. PRE-STORM) in May and June dedicated solely to the investigation of middle-latitude mesoscale convective systems.

Full access
John A. Augustine
and
Kenneth W. Howard

Abstract

Infrared imagery from GOES was used to document mesoscale convective complexes (MCCs) over the United States during 1986 and 1987. A near-record 58 MCCs occurred in 1986, and 44 occurred in 1987. Although these totals were above average relative to MCC numbers of the 7 years prior to 1985, seasonal distributions for both years were atypical. Particularly, each had an extended period (∼3 weeks) when no MCCs occurred in late spring and early summer, a time when the mean MCC seasonal distribution peaks. This peculiarity was investigated by comparing mean large-scale surface and upper-air environments of null- and active-MCC periods of both years. Results confirmed the primary importance to MCC development of strong low-level thermal forcing, as well as proper vertical phasing of favorable lower- and midtropospheric environments.

A cursory survey of MCCs documented outside of the United States reveals that MCCs, or MCC-type storms, are a warm-season phenomenon of midlatitude, subtropical, and low-latitude regions around the globe. They have been documented in South America, Mexico, Europe, West Africa, and China. These storm systems are similar to United States MCCs in that they are nocturnal, persist for over 10 h, tend to develop within weak synoptic-scale dynamics in response to strong low-level thermal forcing and conditional instability, and occur typically downwind (midlevel) of elevated terrain. It is surmised that MCCs probably occur over other parts of the midlatitudes, subtropics, and low latitudes that have yet to be surveyed.

Full access
Robert A. Maddox
and
Kenneth W. Howard

Abstract

No abstract available

Full access
Steven V. Vasiloff
and
Kenneth W. Howard

Abstract

A Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) was deployed near Phoenix, Arizona, during the summer of 2004. The goal was to capture a severe microburst at close range to understand the low-altitude wind structure and evolution. During the evening of 27 July, a severe storm formed along the Estrella Mountains south of Phoenix and moved south of the SMART-R as well as the National Weather Service’s (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) in Phoenix (KIWA). Several microburst–downburst pulses were observed by radar and a surface wind gust of 67 mi h−1 was reported. The radar data illustrate the finescale structure of the microburst pulses, with the SMART-R’s higher-resolution data showing Doppler velocities 3–4 m s−1 greater than the KIWA radar. SMART-R wind shear values were 2–3 times greater with the finer resolution of the SMART-R revealing smaller features in the surface outflow wind structure. Asymmetric outflow may have been a factor as well in the different divergence values. The evolution of the outflow was very rapid with the 5-min KIWA scan intervals being too course to sample the detailed evolution. The SMART-R scans were at 3–5-min intervals and also had difficulty resolving the event. The storm environment displayed characteristics of both moderate-to-high-reflectivity microbursts, typical of the high plains of Colorado.

Full access
Robert A. Maddox
,
Kenneth W. Howard
, and
Charles L. Dempsey

Abstract

On 20/21 August 1993, deep convective storms occurred across much of Arizona, except for the southwestern quarter of the state. Several storms were quite severe, producing downbursts and extensive wind damage in the greater Phoenix area during the late afternoon and evening. The most severe convective storms occurred from 0000 to 0230 UTC 21 August and were noteworthy in that, except for the first reported severe thunderstorm, there was almost no cloud-to-ground (CG) lightning observed during their life cycles. Other intense storms on this day, particularly early storms to the south of Phoenix and those occurring over mountainous terrain to the north and east of Phoenix, were prolific producers of CG lightning. Radar data for an 8-h period (2000 UTC 20 August–0400 UTC 21 August) indicated that 88 convective cells having maximum reflectivities greater than 55 dBZ and persisting longer than 25 min occurred within a 200-km range of Phoenix. Of these cells, 30 were identified as “low-lightning” storms, that is, cells having three or fewer detected CG strikes during their entire radar-detected life cycle. The region within which the low-lightning storms were occurring spread to the north and east during the analysis period.

Examination of the reflectivity structure of the storms using operational Doppler radar data from Phoenix, and of the supportive environment using upper-air sounding data taken at Luke Air Force Base just northwest of Phoenix, revealed no apparent physical reasons for the distinct difference in observed cloud-to-ground lightning character between the storms in and to the west of the immediate Phoenix area versus those to the north, east, and south. However, the radar data do reveal that several extensive clouds of chaff initiated over flight-restricted military ranges to the southwest of Phoenix. The prevailing flow advected the chaff clouds to the north and east. Convective storms that occurred in the area likely affected by the dispersing chaff clouds were characterized by little or no CG lightning.

Field studies in the 1970s demonstrated that chaff injected into building thunderstorms markedly decreased CG lightning strikes. There are no data available regarding either the in-cloud lightning character of storms on this day or the technical specifications of the chaff being used in military aircraft anti–electronic warfare systems. However, it is hypothesized that this case of severe, but low-lightning, convective storms resulted from inadvertent lightning suppression over south-central Arizona due to an extended period of numerous chaff releases over the military ranges.

Full access
Michael W. Douglas
,
Robert A. Maddox
,
Kenneth Howard
, and
Sergio Reyes

Abstract

The pronounced maximum in rainfall during the warm season over southwestern North America has been noted by various investigators. In the United States this is most pronounced over New Mexico and southern Arizona; however, it is but an extension of a much larger-scale phenomenon that appears to be centered over northwestern Mexico. This phenomenon, herein termed the “Mexican monsoon,” is described from analyses of monthly mean rainfall, geostationary satellite imagery, and rawinsonde data. In particular, the authors note the geographical extent and magnitude of the summer rains, the rapidity of their onset, and the timing of the month of maximum rainfall. Finally, the difficulty in explaining the observed precipitation distribution and its timing from monthly mean upper-air wind and moisture patterns is discussed.

Full access
Clinton E. Wallace
,
Robert A. Maddox
, and
Kenneth W. Howard

Abstract

The daily evolution of local surface conditions at Phoenix, Arizona, and the characteristics of the 1200 UTC sounding at Tucson, Arizona, have been examined to determine important meteorological features that lead to thunderstorm occurrence over the low deserts of central Arizona. Each day of July and August during the period 1990–95 has been stratified based upon daily mean, surface moisture conditions at Phoenix, Arizona, and the occurrence of afternoon and evening convective activity in the Phoenix metropolitan area. The nearest operational sounding, taken 160 km to the southeast at Tucson, is shown to be not representative of low-level thermodynamic conditions in central Arizona. Thus, Phoenix forecasters’ ability to identify precursor conditions for the development of thunderstorms is impaired. On days that convective storms occur in the Phoenix area, there is a decrease in the diurnal amplitude of surface dewpoint changes, signifying increased/deeper boundary layer moisture. This signal is very subtle and may not have much forecast utility. Additionally, it is found that surges of moist air from the Gulf of California do not occur frequently during the 36–48 h immediately prior to thunderstorm events in the Phoenix area. It is shown that the 1200 UTC Tucson wind profile has a significant northerly flow in low levels on moist days when storms do not occur in the Phoenix area. The forecaster needs information on the local temperature and moisture profile to assess the potential for thunderstorms in the Phoenix area. However, routine upper-air observations are unavailable. Steps are being taken to obtain morning soundings in Phoenix, and the improving capabilities of satellite-derived thermodynamic data and mesoscale models may also provide the forecaster critical information in the future. The findings, although specifically developed for the Phoenix area, may be relevant to thunderstorm forecasting in many regions of the interior West.

Full access
Steven V. Vasiloff
,
Kenneth W. Howard
, and
Jian Zhang

Abstract

The principal source of information for operational flash flood monitoring and warning issuance is weather radar–based quantitative estimates of precipitation. Rain gauges are considered truth for the purposes of validating and calibrating real-time radar-derived precipitation data, both in a real-time sense and climatologically. This paper examines various uncertainties and challenges involved with using radar and rain gauge data in a severe local storm environment. A series of severe thunderstorm systems that occurred across northeastern Montana illustrates various problems with comparing radar precipitation estimates and real-time gauge data, including extreme wind effects, hail, missing gauge data, and radar quality control. Ten radar–gauge time series pairs were analyzed with most found to be not useful for real-time radar calibration. These issues must be carefully considered within the context of ongoing efforts to develop robust real-time tools for evaluating radar–gauge uncertainties. Recommendations are made for radar and gauge data quality control efforts that would benefit the operational use of gauge data.

Full access
Darren M. McCollum
,
Robert A. Maddox
, and
Kenneth W. Howard

Abstract

A mesoscale convective system (MCS) developed over central Arizona during the late evening and early morning of 23–24 July 1990 and produced widespread heavy rain, strong winds, and damage to buildings, vehicles, power poles, and trees across northern sections of the Phoenix metropolitan area. Although forecasters from both the National Weather Service and National Severe Storms Laboratory, working together in the 1990 SouthWest Area Monsoon Project (SWAMP), did not expect thunderstorms to develop, severe thunderstorm and flash flood warnings were issued for central Arizona between 0300 and 0500 local standard time. This study examines the precursor and supportive environment of the mesoscale convective system, drawing upon routine synoptic data and special observations gathered during SWAMP.

During the evening of 23 July and the early morning of 24 July, low-level southwesterly flow developed and advected moisture present over southwest Arizona across south-central Arizona into the foothills and mountains north and northeast of Phoenix. The increase in moisture produced substantial convective instability in an environment that had been quite stable during the late afternoon. Thunderstorms rapidly developed as this occurred. Outflow from these thunderstorms likely moved downslope into the lower deserts of central Arizona, helping to initiate additional convection. The most persistent convective activity developed within a region of low-level convergence between a pronounced mesoscale outflow boundary and the low-level southwesterly flow. The resultant MCS moved to the south-southeast and weakened just south of Phoenix, while its outflow apparently forced new thunderstorm development north of Tucson.

The operational sounding and surface observation network in Arizona failed to detect important mesoscale circulations and thermodynamic gradients that contributed to the occurrence of the severe weather over central Arizona. In this case, conditions favorable for severe thunderstorms developed rapidly, over a period of a few hours. Large-scale analyses provided little insight into the causes of this particular severe weather event. Higher time and space resolution observational data may be needed to improve forecasts of some severe weather events over the Phoenix area.

Full access