Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Kent. H. Knopfmeier x
  • All content x
Clear All Modify Search
Kent H. Knopfmeier and David J. Stensrud

Abstract

The expansion of surface mesoscale networks (mesonets) across the United States provides a high-resolution observational dataset for meteorological analysis and prediction. To clarify the impact of mesonet data on the accuracy of surface analyses, 2-m temperature, 2-m dewpoint, and 10-m wind analyses for 2-week periods during the warm and cold seasons produced through an ensemble Kalman filter (EnKF) approach are compared to surface analyses created by the Real-Time Mesoscale Analysis (RTMA). Results show in general a similarity between the EnKF analyses and the RTMA, with the EnKF exhibiting a smoother appearance with less small-scale variability. Root-mean-square (RMS) innovations are generally lower for temperature and dewpoint from the RTMA, implying a closer fit to the observations. Kinetic energy spectra computed from the two analyses reveal that the EnKF analysis spectra match more closely to the spectra computed from observations and numerical models in earlier studies. Data-denial experiments using the EnKF completed for the first week of the warm and cold seasons, as well as for two periods characterized by high mesoscale variability within the experimental domain, show that mesonet data removal imparts only minimal degradation to the analyses. This is because of the localized background covariances computed for the four surface variables having spatial scales much larger than the average spacing of mesonet stations. Results show that removing 75% of the mesonet observations has only minimal influence on the analysis.

Full access
Michael C. Coniglio, Stacey M. Hitchcock, and Kent H. Knopfmeier

Abstract

This study examines the impact of assimilating preconvective radiosonde observations obtained by mobile sounding systems on short-term forecasts of convection. Ensemble data assimilation is performed on a mesoscale (15 km) grid and the resulting analyses are downscaled to produce forecasts on a convection-permitting grid (3 km). The ensembles of forecasts are evaluated through their depiction of radar reflectivity compared to observed radar reflectivity. Examination of fractions skill scores over eight cases shows that, for four of the cases, assimilation of radiosonde observations nearby to subsequent convection has a positive impact on the initiation and early evolution during the first 3–4 h of the forecasts, even for the smallest resolvable scales of the 3-km grid. For the four cases in which positive impacts near the smallest resolvable scales of the grid are not seen, analysis of the changes to the preconvective environment suggests that suboptimal locations of the soundings compared to the location of convective initiation are to blame. The aggregate positive impacts on forecasts of convection is more clearly seen when spatial scales larger than individual thunderstorms are examined.

Full access
Stacey M. Hitchcock, Michael C. Coniglio, and Kent H. Knopfmeier

Abstract

This study examines the impact of assimilating three radiosonde profiles obtained from ground-based mobile systems during the Mesoscale Predictability Experiment (MPEX) on analyses and convection-permitting model forecasts of the 31 May 2013 convective event over Oklahoma. These radiosonde profiles (in addition to standard observations) are assimilated into a 36-member mesoscale ensemble using an ensemble Kalman filter (EnKF) before embedding a convection-permitting (3 km) grid and running a full ensemble of 9-h forecasts. This set of 3-km forecasts is compared to a control run that does not assimilate the MPEX soundings. The analysis of low- to midlevel moisture is impacted the most by the assimilation, but coherent mesoscale differences in temperature and wind are also seen, primarily downstream of the location of the soundings. The ensemble of forecasts of convection on the 3-km grid are improved the most in the first three hours of the forecast in a region where the analyzed position of low-level frontal convergence and midlevel moisture was improved on the mesoscale grid. Later forecasts of the upscale growth of intense convection over central Oklahoma are improved somewhat, but larger ensemble spread lowers confidence in the significance of the improvements. Changes in the horizontal localization radius from the standard value applied to the MPEX sounding assimilation alters the specific times that the forecasts are improved in the first three hours of the forecasts, while changes to the vertical localization radius and specified temperature and wind observation error result in little to no improvements in the forecasts.

Full access
Kelsey C. Britt, Patrick S. Skinner, Pamela L. Heinselman, and Kent H. Knopfmeier

Abstract

Cyclic mesocyclogenesis is the process by which a supercell produces multiple mesocyclones with similar life cycles. The frequency of cyclic mesocyclogenesis has been linked to tornado potential, with higher frequencies decreasing the potential for tornadogenesis. Thus, the ability to predict the presence and frequency of cycling in supercells may be beneficial to forecasters for assessing tornado potential. However, idealized simulations of cyclic mesocyclogenesis have found it to be highly sensitive to environmental and computational parameters. Thus, whether convective-allowing models can resolve and predict cycling has yet to be determined. This study tests the capability of a storm-scale, ensemble prediction system to resolve the cycling process and predict its frequency. Forecasts for three cyclic supercells occurring in May 2017 are generated by NSSL’s Warn-on-Forecast System (WoFS) using 3- and 1-km grid spacing. Rare cases of cyclic-like processes were identified at 3 km, but cycling occurred more frequently at 1 km. WoFS predicted variation in cycling frequencies for the storms that were similar to observed variations in frequency. Object-based identification of mesocyclones was used to extract environmental parameters from a storm-relative inflow sector from each mesocyclone. Lower magnitudes of 0–1-km storm-relative helicity and significant tornado parameter are present for the two more frequently cycling supercells, and higher values are present for the case with the fewest cycles. These results provide initial evidence that high-resolution ensemble forecasts can potentially provide useful guidance on the likelihood and cycling frequency of cyclic supercells.

Restricted access
Nusrat Yussouf, David C. Dowell, Louis J. Wicker, Kent H. Knopfmeier, and Dustan M. Wheatley

Abstract

As part of NOAA’s Warn-on-Forecast (WoF) initiative, a multiscale ensemble-based assimilation and prediction system is developed using the WRF-ARW model and DART assimilation software. To evaluate the capabilities of the system, retrospective short-range probabilistic storm-scale (convection allowing) ensemble analyses and forecasts are produced for the 27 April 2011 Alabama severe weather outbreak. Results indicate that the storm-scale ensembles are able to analyze the observed storms with strong low-level rotation at approximately the correct locations and to retain the supercell structures during the 0–1-h forecasts with reasonable accuracy. The system predicts the low-level mesocyclones of significant isolated tornadic supercells that align well with the locations of radar-derived rotation. For cases with multiple interacting storms in close proximity, the system tends to produce more variability in mesocyclone forecasts from one initialization time to the next until the observations show the dominance of one of the cells. The short-range ensemble probabilistic forecasts obtained from this continuous 5-min storm-scale 6-h-long update system demonstrate the potential of a frequently updated, high-resolution NWP system that could be used to extend severe weather warning lead times. This study also demonstrates the challenges associated with developing a WoF-type system. The results motivate future work to reduce model errors associated with storm motion and spurious cells, and to design storm-scale ensembles that better represent typical 1-h forecast errors.

Full access
Patrick S. Skinner, Louis J. Wicker, Dustan M. Wheatley, and Kent H. Knopfmeier

Abstract

Two spatial verification methods are applied to ensemble forecasts of low-level rotation in supercells: a four-dimensional, object-based matching algorithm and the displacement and amplitude score (DAS) based on optical flow. Ensemble forecasts of low-level rotation produced using the National Severe Storms Laboratory (NSSL) Experimental Warn-on-Forecast System are verified against WSR-88D single-Doppler azimuthal wind shear values interpolated to the model grid. Verification techniques are demonstrated using four 60-min forecasts issued at 15-min intervals in the hour preceding development of the 20 May 2013 Moore, Oklahoma, tornado and compared to results from two additional forecasts of tornadic supercells occurring during the springs of 2013 and 2014.

The object-based verification technique and displacement component of DAS are found to reproduce subjectively determined forecast characteristics in successive forecasts for the 20 May 2013 event, as well as to discriminate in subjective forecast quality between different events. Ensemble-mean, object-based measures quantify spatial and temporal displacement, as well as storm motion biases in predicted low-level rotation in a manner consistent with subjective interpretation. Neither method produces useful measures of the intensity of low-level rotation, owing to deficiencies in the verification dataset and forecast resolution.

Full access
Dustan M. Wheatley, Kent H. Knopfmeier, Thomas A. Jones, and Gerald J. Creager

Abstract

This first part of a two-part study on storm-scale radar and satellite data assimilation provides an overview of a multicase study conducted as part of the NOAA Warn-on-Forecast (WoF) project. The NSSL Experimental WoF System for ensembles (NEWS-e) is used to produce storm-scale analyses and forecasts of six diverse severe weather events from spring 2013 and 2014. In this study, only Doppler reflectivity and radial velocity observations (and, when available, surface mesonet data) are assimilated into a 36-member, storm-scale ensemble using an ensemble Kalman filter (EnKF) approach. A series of 1-h ensemble forecasts are then initialized from storm-scale analyses during the 1-h period preceding the onset of storm reports. Of particular interest is the ability of these 0–1-h ensemble forecasts to reproduce the low-level rotational characteristics of supercell thunderstorms, as well as other convective hazards. For the tornado-producing thunderstorms considered in this study, ensemble probabilistic forecasts of low-level rotation generally indicated a rotating thunderstorm approximately 30 min before the time of first observed tornado. Displacement errors (often to the north of tornado-affected areas) associated with vorticity swaths were greatest in those forecasts launched 30–60 min before the time of first tornado. Similar forecasts were produced for a tornadic mesovortex along the leading edge of a bow echo and, again, highlighted a well-defined vorticity swath as much as 30 min prior to the first tornado.

Full access
Montgomery L. Flora, Patrick S. Skinner, Corey K. Potvin, Anthony E. Reinhart, Thomas A. Jones, Nusrat Yussouf, and Kent H. Knopfmeier

Abstract

An object-based verification method for short-term, storm-scale probabilistic forecasts was developed and applied to mesocyclone guidance produced by the experimental Warn-on-Forecast System (WoFS) in 63 cases from 2017 to 2018. The probabilistic mesocyclone guidance was generated by calculating gridscale ensemble probabilities from WoFS forecasts of updraft helicity (UH) in layers 2–5 km (midlevel) and 0–2 km (low-level) above ground level (AGL) aggregated over 60-min periods. The resulting ensemble probability swaths are associated with individual thunderstorms and treated as objects with a single, representative probability value prescribed. A mesocyclone probability object, conceptually, is a region bounded by the ensemble forecast envelope of a mesocyclone track for a given thunderstorm over 1 h. The mesocyclone probability objects were matched against rotation track objects in Multi-Radar Multi-Sensor data using the total interest score, but with the maximum displacement varied between 0, 9, 15, and 30 km. Forecast accuracy and reliability were assessed at four different forecast lead time periods: 0–60, 30–90, 60–120, and 90–150 min. In the 0–60-min forecast period, the low-level UH probabilistic forecasts had a POD, FAR, and CSI of 0.46, 0.45, and 0.31, respectively, with a probability threshold of 22.2% (the threshold of maximum CSI). In the 90–150-min forecast period, the POD and CSI dropped to 0.39 and 0.27 while FAR remained relatively unchanged. Forecast probabilities > 60% overpredicted the likelihood of observed mesocyclones in the 0–60-min period; however, reliability improved when allowing larger maximum displacements for object matching and at longer lead times.

Full access
John R. Lawson, John S. Kain, Nusrat Yussouf, David C. Dowell, Dustan M. Wheatley, Kent H. Knopfmeier, and Thomas A. Jones

Abstract

The Warn-on-Forecast (WoF) program, driven by advanced data assimilation and ensemble design of numerical weather prediction (NWP) systems, seeks to advance 0–3-h NWP to aid National Weather Service warnings for thunderstorm-induced hazards. An early prototype of the WoF prediction system is the National Severe Storms Laboratory (NSSL) Experimental WoF System for ensembles (NEWSe), which comprises 36 ensemble members with varied initial conditions and parameterization suites. In the present study, real-time 3-h quantitative precipitation forecasts (QPFs) during spring 2016 from NEWSe members are compared against those from two real-time deterministic systems: the operational High Resolution Rapid Refresh (HRRR, version 1) and an upgraded, experimental configuration of the HRRR. All three model systems were run at 3-km horizontal grid spacing and differ in initialization, particularly in the radar data assimilation methods. It is the impact of this difference that is evaluated herein using both traditional and scale-aware verification schemes. NEWSe, evaluated deterministically for each member, shows marked improvement over the two HRRR versions for 0–3-h QPFs, especially at higher thresholds and smaller spatial scales. This improvement diminishes with forecast lead time. The experimental HRRR model, which became operational as HRRR version 2 in August 2016, also provides added skill over HRRR version 1.

Full access
Patrick S. Skinner, Dustan M. Wheatley, Kent H. Knopfmeier, Anthony E. Reinhart, Jessica J. Choate, Thomas A. Jones, Gerald J. Creager, David C. Dowell, Curtis R. Alexander, Therese T. Ladwig, Louis J. Wicker, Pamela L. Heinselman, Patrick Minnis, and Rabindra Palikonda

Abstract

An object-based verification methodology for the NSSL Experimental Warn-on-Forecast System for ensembles (NEWS-e) has been developed and applied to 32 cases between December 2015 and June 2017. NEWS-e forecast objects of composite reflectivity and 30-min updraft helicity swaths are matched to corresponding reflectivity and rotation track objects in Multi-Radar Multi-Sensor system data on space and time scales typical of a National Weather Service warning. Object matching allows contingency-table-based verification statistics to be used to establish baseline performance metrics for NEWS-e thunderstorm and mesocyclone forecasts. NEWS-e critical success index (CSI) scores of reflectivity (updraft helicity) forecasts decrease from approximately 0.7 (0.4) to 0.4 (0.2) over 3 h of forecast time. CSI scores decrease through the forecast period, indicating that errors do not saturate during the 3-h forecast. Lower verification scores for rotation track forecasts are primarily a result of a high-frequency bias. Comparison of different system configurations used in 2016 and 2017 shows an increase in skill for 2017 reflectivity forecasts, attributable mainly to improvements in the forecast initial conditions. A small decrease in skill in 2017 rotation track forecasts is likely a result of sample differences between 2016 and 2017. Although large case-to-case variation is present, evidence is found that NEWS-e forecast skill improves with increasing object size and intensity.

Full access