Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Kenta Kurosawa x
  • All content x
Clear All Modify Search
Shunji Kotsuki, Kenta Kurosawa, Shigenori Otsuka, Koji Terasaki, and Takemasa Miyoshi

Abstract

Over the past few decades, precipitation forecasts by numerical weather prediction (NWP) models have been remarkably improved. Yet, precipitation nowcasting based on spatiotemporal extrapolation tends to provide a better precipitation forecast at shorter lead times with much less computation. Therefore, merging the precipitation forecasts from the NWP and extrapolation systems would be a viable approach to quantitative precipitation forecast (QPF). Although the optimal weights between the NWP and extrapolation systems are usually defined as a global constant, the weights would vary in space, particularly for global QPF. This study proposes a method to find the optimal weights at each location using the local threat score (LTS), a spatially localized version of the threat score. We test the locally optimal weighting with a global NWP system composed of the local ensemble transform Kalman filter and the Nonhydrostatic Icosahedral Atmospheric Model (NICAM-LETKF). For the extrapolation system, the RIKEN’s global precipitation nowcasting system called GSMaP_RNC is used. GSMaP_RNC extrapolates precipitation patterns from the Japan Aerospace Exploration Agency (JAXA)’s Global Satellite Mapping of Precipitation (GSMaP). The benefit of merging in global precipitation forecast lasts longer compared to regional precipitation forecast. The results show that the locally optimal weighting is beneficial.

Open access