Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Kerstin Ebell x
- Refine by Access: All Content x
Abstract
For the first time, the cloud radiative effect (CRE) has been characterized for the Arctic site Ny-Ålesund, Svalbard, Norway, including more than 2 years of data (June 2016–September 2018). The cloud radiative effect, that is, the difference between the all-sky and equivalent clear-sky net radiative fluxes, has been derived based on a combination of ground-based remote sensing observations of cloud properties and the application of broadband radiative transfer simulations. The simulated fluxes have been evaluated in terms of a radiative closure study. Good agreement with observed surface net shortwave (SW) and longwave (LW) fluxes has been found, with small biases for clear-sky (SW: 3.8 W m−2; LW: −4.9 W m−2) and all-sky (SW: −5.4 W m−2; LW: −0.2 W m−2) situations. For monthly averages, uncertainties in the CRE are estimated to be small (~2 W m−2). At Ny-Ålesund, the monthly net surface CRE is positive from September to April/May and negative in summer. The annual surface warming effect by clouds is 11.1 W m−2. The longwave surface CRE of liquid-containing cloud is mainly driven by liquid water path (LWP) with an asymptote value of 75 W m−2 for large LWP values. The shortwave surface CRE can largely be explained by LWP, solar zenith angle, and surface albedo. Liquid-containing clouds (LWP > 5 g m−2) clearly contribute most to the shortwave surface CRE (70%–98%) and, from late spring to autumn, also to the longwave surface CRE (up to 95%). Only in winter are ice clouds (IWP > 0 g m−2; LWP < 5 g m−2) equally important or even dominating the signal in the longwave surface CRE.
Abstract
For the first time, the cloud radiative effect (CRE) has been characterized for the Arctic site Ny-Ålesund, Svalbard, Norway, including more than 2 years of data (June 2016–September 2018). The cloud radiative effect, that is, the difference between the all-sky and equivalent clear-sky net radiative fluxes, has been derived based on a combination of ground-based remote sensing observations of cloud properties and the application of broadband radiative transfer simulations. The simulated fluxes have been evaluated in terms of a radiative closure study. Good agreement with observed surface net shortwave (SW) and longwave (LW) fluxes has been found, with small biases for clear-sky (SW: 3.8 W m−2; LW: −4.9 W m−2) and all-sky (SW: −5.4 W m−2; LW: −0.2 W m−2) situations. For monthly averages, uncertainties in the CRE are estimated to be small (~2 W m−2). At Ny-Ålesund, the monthly net surface CRE is positive from September to April/May and negative in summer. The annual surface warming effect by clouds is 11.1 W m−2. The longwave surface CRE of liquid-containing cloud is mainly driven by liquid water path (LWP) with an asymptote value of 75 W m−2 for large LWP values. The shortwave surface CRE can largely be explained by LWP, solar zenith angle, and surface albedo. Liquid-containing clouds (LWP > 5 g m−2) clearly contribute most to the shortwave surface CRE (70%–98%) and, from late spring to autumn, also to the longwave surface CRE (up to 95%). Only in winter are ice clouds (IWP > 0 g m−2; LWP < 5 g m−2) equally important or even dominating the signal in the longwave surface CRE.
Abstract
A method is presented to analyze the cloud life cycle of frontal systems passing over European supersites. It combines information on the vertical profiles of cloud properties derived from ground-based observations with cloud products obtained from satellite-based observations, including their spatial variability. The Euler and Lagrange perspectives are adopted to consider the history of a cloud system that passes the supersites. The forward model known as RTTOV (Radiative Transfer for the Television and Infrared Observation Satellite Operational Vertical Sounder) and the ground-based “CloudNET” products are used to simulate synthetic satellite observations at the supersites, which are subsequently compared with the actual observations of the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument. Different metrics are considered to quantify and interpret the consistency of the synthetic and the observed satellite data: brightness temperatures at the thermal IR channels, the split-window channels, and trispectral combinations, as well as the outgoing longwave radiation. In this way, the uncertainties of the individual datasets are investigated. This knowledge provides the motivation to combine the disjunct cloud products from satellite with those from ground instruments to characterize the development of the passing cloud frontal systems. In addition, back trajectories started at different stages of the cloud system were used to analyze its history prior to the supersite overpass. The trajectories are used to study, for example, the life time of the cloud frontal system, changes of the cloud phase, and the evolution of cloud physics such as optical thickness, effective particle size, and water path. As a test bed, a case study with a cold front passing Lindenberg, Germany, is presented.
Abstract
A method is presented to analyze the cloud life cycle of frontal systems passing over European supersites. It combines information on the vertical profiles of cloud properties derived from ground-based observations with cloud products obtained from satellite-based observations, including their spatial variability. The Euler and Lagrange perspectives are adopted to consider the history of a cloud system that passes the supersites. The forward model known as RTTOV (Radiative Transfer for the Television and Infrared Observation Satellite Operational Vertical Sounder) and the ground-based “CloudNET” products are used to simulate synthetic satellite observations at the supersites, which are subsequently compared with the actual observations of the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument. Different metrics are considered to quantify and interpret the consistency of the synthetic and the observed satellite data: brightness temperatures at the thermal IR channels, the split-window channels, and trispectral combinations, as well as the outgoing longwave radiation. In this way, the uncertainties of the individual datasets are investigated. This knowledge provides the motivation to combine the disjunct cloud products from satellite with those from ground instruments to characterize the development of the passing cloud frontal systems. In addition, back trajectories started at different stages of the cloud system were used to analyze its history prior to the supersite overpass. The trajectories are used to study, for example, the life time of the cloud frontal system, changes of the cloud phase, and the evolution of cloud physics such as optical thickness, effective particle size, and water path. As a test bed, a case study with a cold front passing Lindenberg, Germany, is presented.
Abstract
Two power-law relations linking equivalent radar reflectivity factor Z e and snowfall rate S are derived for a K-band Micro Rain Radar (MRR) and for a W-band cloud radar. For the development of these Z e –S relationships, a dataset of calculated and measured variables is used. Surface-based video-disdrometer measurements were collected during snowfall events over five winters at the high-latitude site in Hyytiälä, Finland. The data from 2014 to 2018 include particle size distributions (PSD) and their fall velocities, from which snowflake masses were derived. The K- and W-band Z e values are computed using these surface-based observations and snowflake scattering properties as provided by T-matrix and single-particle scattering tables, respectively. The uncertainty analysis shows that the K-band snowfall-rate estimation is significantly improved by including the intercept parameter N 0 of the PSD calculated from concurrent disdrometer measurements. If N 0 is used to adjust the prefactor of the Z e –S relationship, the RMSE of the snowfall-rate estimate can be reduced from 0.37 to around 0.11 mm h−1. For W-band radar, a Z e –S relationship with constant parameters for all available snow events shows a similar uncertainty when compared with the method that includes the PSD intercept parameter. To demonstrate the performance of the proposed Z e –S relationships, they are applied to measurements of the MRR and the W-band microwave radar for Arctic clouds at the Arctic research base operated by the German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) and the French Polar Institute Paul Emile Victor (IPEV) (AWIPEV) in Ny-Ålesund, Svalbard, Norway. The resulting snowfall-rate estimates show good agreement with in situ snowfall observations while other Z e –S relationships from literature reveal larger differences.
Abstract
Two power-law relations linking equivalent radar reflectivity factor Z e and snowfall rate S are derived for a K-band Micro Rain Radar (MRR) and for a W-band cloud radar. For the development of these Z e –S relationships, a dataset of calculated and measured variables is used. Surface-based video-disdrometer measurements were collected during snowfall events over five winters at the high-latitude site in Hyytiälä, Finland. The data from 2014 to 2018 include particle size distributions (PSD) and their fall velocities, from which snowflake masses were derived. The K- and W-band Z e values are computed using these surface-based observations and snowflake scattering properties as provided by T-matrix and single-particle scattering tables, respectively. The uncertainty analysis shows that the K-band snowfall-rate estimation is significantly improved by including the intercept parameter N 0 of the PSD calculated from concurrent disdrometer measurements. If N 0 is used to adjust the prefactor of the Z e –S relationship, the RMSE of the snowfall-rate estimate can be reduced from 0.37 to around 0.11 mm h−1. For W-band radar, a Z e –S relationship with constant parameters for all available snow events shows a similar uncertainty when compared with the method that includes the PSD intercept parameter. To demonstrate the performance of the proposed Z e –S relationships, they are applied to measurements of the MRR and the W-band microwave radar for Arctic clouds at the Arctic research base operated by the German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) and the French Polar Institute Paul Emile Victor (IPEV) (AWIPEV) in Ny-Ålesund, Svalbard, Norway. The resulting snowfall-rate estimates show good agreement with in situ snowfall observations while other Z e –S relationships from literature reveal larger differences.
Abstract
Remote sensing instruments are heavily used to provide observations for both the operational and research communities. These sensors do not provide direct observations of the desired atmospheric variables, but instead, retrieval algorithms are necessary to convert the indirect observations into the variable of interest. It is critical to be aware of the underlying assumptions made by many retrieval algorithms, including that the retrieval problem is often ill posed and that there are various sources of uncertainty that need to be treated properly. In short, the retrieval challenge is to invert a set of noisy observations to obtain estimates of atmospheric quantities. The problem is often complicated by imperfect forward models, by imperfect prior knowledge, and by the existence of nonunique solutions. Optimal estimation (OE) is a widely used physical retrieval method that combines measurements, prior information, and the corresponding uncertainties based on Bayes’s theorem to find an optimal solution for the atmospheric state. Furthermore, OE also allows the relative contributions of the different sources of error to the uncertainty in the final retrieved atmospheric state to be understood. Here, we provide a novel Python library to illustrate the use of OE for inverse problems in the atmospheric sciences. We introduce two example problems: how to retrieve drop size distribution parameters from radar observations and how to retrieve the temperature profile from ground-based microwave sensors. Using these examples, we discuss common pitfalls, how the various error sources impact the retrieval, and how the quality of the retrieval results can be quantified.
Abstract
Remote sensing instruments are heavily used to provide observations for both the operational and research communities. These sensors do not provide direct observations of the desired atmospheric variables, but instead, retrieval algorithms are necessary to convert the indirect observations into the variable of interest. It is critical to be aware of the underlying assumptions made by many retrieval algorithms, including that the retrieval problem is often ill posed and that there are various sources of uncertainty that need to be treated properly. In short, the retrieval challenge is to invert a set of noisy observations to obtain estimates of atmospheric quantities. The problem is often complicated by imperfect forward models, by imperfect prior knowledge, and by the existence of nonunique solutions. Optimal estimation (OE) is a widely used physical retrieval method that combines measurements, prior information, and the corresponding uncertainties based on Bayes’s theorem to find an optimal solution for the atmospheric state. Furthermore, OE also allows the relative contributions of the different sources of error to the uncertainty in the final retrieved atmospheric state to be understood. Here, we provide a novel Python library to illustrate the use of OE for inverse problems in the atmospheric sciences. We introduce two example problems: how to retrieve drop size distribution parameters from radar observations and how to retrieve the temperature profile from ground-based microwave sensors. Using these examples, we discuss common pitfalls, how the various error sources impact the retrieval, and how the quality of the retrieval results can be quantified.
Abstract
One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.
Abstract
One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.
Abstract
Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) 3 project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.
Abstract
Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) 3 project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.